Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2022, Volume 14, Issue 3, Pages 117–126
DOI: https://doi.org/10.13108/2022-14-3-117
(Mi ufa627)
 

Maximal convergence of Faber series in weighted rearrangement invariant Smirnov classes

A. Testici

Balikesir University, Department of Mathematics, 10145, Balikesir, Turkey
References:
Abstract: Let $K$ be a bounded set on the complex plane $\mathbb{C}$ with a connected complement $K^{-}:=\overline{\mathbb{C}}\backslash K$. Let $ \mathbb{D}:=\left\{ w\in \mathbb{C}:\left\vert w\right\vert <1\right\} $ and $\mathbb{D}^{-}:=\overline{\mathbb{C}}\backslash \overline{\mathbb{D}}$. By $\varphi $ we denote the conformal mapping of $K^{-}$onto $\left\{ w\in \mathbb{C} :\left\vert w\right\vert >1\right\} $ normalized by the conditions $\varphi \left( \infty \right) =\infty $ and $\lim_{z\rightarrow \infty}\varphi \left( z\right) /z>0$. Let $\Gamma _{R}:=\left\{ z\in K^{-}:\left\vert \varphi \left( z\right) \right\vert =R>1\right\} $ and $G_{R}:=\operatorname{Int}\Gamma _{R}$. Let also $\Phi _{k}\left( z\right) $, $k=0,1,2,\ldots$ be the Faber polynomials for $K$ constructed via conformal mapping $\varphi $. As it is well known, if $f $ is an analytic function in $G_{R}$, then the representation $ f\left( z\right) =\sum\limits_{k=0}^{\infty}a_{k}\left( f\right) \Phi _{k}\left( z\right) $, $z\in G_{R} $ holds. The partial sums of Faber series play an important role in constructing approximations in complex plane and investigating properties of Faber series is one of the essential issue. In this work the maximal convergence of the partial sums of the partial sums of the Faber series of $f$ in weighted rearrangement invariant Smirnov class $E_{X}\left(G_{R},\omega \right)$ of analytic functions in $G_{R}$ is studied. Here the weight $\omega$ satisfies the Muckenhoupt condition on $\Gamma _{R}$. The estimates are given in the uniform norm on $K$. The right sides of obtained inequalities involve the powers of the parameter $R$ and $E_{n}\left( f,G\right) _{X.\omega}$ called the best approximation number of $f$ in $E_{X}\left( G_{R},\omega \right) $, defined as $E_{n}\left( f,G\right) _{X.\omega}:=\inf \left\{ \left\Vert f-P_{n}\right\Vert _{X\left( \Gamma ,\omega \right)}:P_{n}\in \Pi _{n}\right\} $. Here $\Pi _{n}$ is the class of algebraic polynomials of degree not exceeding $n$. These results given in this paper is a kind of generalisation of similar results obtained in the classical Smirnov classes.
Keywords: Maximal convergence, Banach function space, Faber series, weighted rearrangement invariant space.
Received: 25.01.2021
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 30E10,41A10, 41A30
Language: English
Original paper language: English
Citation: A. Testici, “Maximal convergence of Faber series in weighted rearrangement invariant Smirnov classes”, Ufa Math. J., 14:3 (2022), 117–126
Citation in format AMSBIB
\Bibitem{Tes22}
\by A.~Testici
\paper Maximal convergence of Faber series in weighted rearrangement invariant Smirnov classes
\jour Ufa Math. J.
\yr 2022
\vol 14
\issue 3
\pages 117--126
\mathnet{http://mi.mathnet.ru//eng/ufa627}
\crossref{https://doi.org/10.13108/2022-14-3-117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4472642}
Linking options:
  • https://www.mathnet.ru/eng/ufa627
  • https://doi.org/10.13108/2022-14-3-117
  • https://www.mathnet.ru/eng/ufa/v14/i3/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024