Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2022, Volume 14, Issue 3, Pages 51–59
DOI: https://doi.org/10.13108/2022-14-3-51
(Mi ufa620)
 

Hadamard type operators in spaces of holomorphic functions on a ball

O. A. Ivanovaa, S. N. Melikhovab

a Institute of Mathematics, Mechanics and Computer Sciences, Southern Federal University, Rostov-on-Don
b Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz
References:
Abstract: We study Hadamard type operators in the spaces of functions holomorphic in an open ball in $\mathbb{C}^N$ centered at the origin. These are continuous linear operators, for which each monomial is an eigenvector. We obtain a representation of Hadamard operators in the form of a multiplicative convolution. The proof of this representation employs essentially Fantappiè transformation realizing dual to the spaces of holomorphic functions and the holomorphy property of the characteristic function of a continuous linear operator in them. The applied method allows us to reduce the problem on representation of a Hadamard operator to the problem on holomorphic continuation of a function holomorphic at the point $0$ into a given open ball in $\mathbb{C}^N$ with $l_1$-norm. We prove that the space of the Hadamard type operators from one mentioned space into another with the topology of the bounded convergence is linearly topologically isomorphic to the strong dual to the space of the germs of all functions holomorphic on a closed polydisk.
Keywords: Hadamard type operator, space of holomorphic functions.
Received: 14.04.2022
Bibliographic databases:
Document Type: Article
UDC: 517.982.274+517.983.22
MSC: 46E10, 47B91
Language: English
Original paper language: Russian
Citation: O. A. Ivanova, S. N. Melikhov, “Hadamard type operators in spaces of holomorphic functions on a ball”, Ufa Math. J., 14:3 (2022), 51–59
Citation in format AMSBIB
\Bibitem{IvaMel22}
\by O.~A.~Ivanova, S.~N.~Melikhov
\paper Hadamard type operators
in spaces of holomorphic functions on a ball
\jour Ufa Math. J.
\yr 2022
\vol 14
\issue 3
\pages 51--59
\mathnet{http://mi.mathnet.ru//eng/ufa620}
\crossref{https://doi.org/10.13108/2022-14-3-51}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4472637}
Linking options:
  • https://www.mathnet.ru/eng/ufa620
  • https://doi.org/10.13108/2022-14-3-51
  • https://www.mathnet.ru/eng/ufa/v14/i3/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:141
    Russian version PDF:44
    English version PDF:18
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024