Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2010, Volume 2, Issue 3, Pages 46–53 (Mi ufa62)  

This article is cited in 2 scientific papers (total in 2 papers)

On the accuracy of asymptotic approximation of subharmonic functions by the logarithm of the modulus of an entire function

V. I. Lutsenkoa, R. S. Yulmukhametovb

a Bashkir State University, Ufa, Russia
b Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia
Full-text PDF (359 kB) Citations (2)
References:
Abstract: We study the degree of possible accuracy of the asymptotic approximation of subharmonic functions by the logarithm of the modulus of an entire function. It is proved that if a subharmonic function $u$ is twice differentiable and satisfies the condition
$$ m\le|z|\Delta u(z)\le M,\qquad|z|>0, $$
where $M,m>0$, then approximation with the accuracy $q\ln|z|+O(1)$ with the constant $q\in(0,\frac14)$ is possible only outside sets of non-$C_0$-set. On the other hand, it is shown that approximation with the accuracy to $q\ln|z|+O(1)$ with the constant $q\ge\frac14$ is possible outside sets, that can be covered by circles $B(z_k,r_k)$ so that
$$ \sum_{|z_k|\le R}r_k=O(R^{\frac34-q}) $$
when $q\in\bigl[\frac14,\frac34\bigr]$ and
$$ \sum_{|z_k|\ge R}r_k=O(R^{\frac34-q}) $$
when $q>\frac34$. In particular, these sets are $C_0$-sets when $q>\frac14$. In the second case, the approximating function is the same for all $q\ge\frac14$, and this function is only a small modification of sine type functions, constructed by Yu. Lubarsky and M. Sodin.
Keywords: subharmonic functions, entire functions.
Received: 03.07.2010
Bibliographic databases:
Document Type: Article
UDC: 517.574
Language: Russian
Citation: V. I. Lutsenko, R. S. Yulmukhametov, “On the accuracy of asymptotic approximation of subharmonic functions by the logarithm of the modulus of an entire function”, Ufimsk. Mat. Zh., 2:3 (2010), 46–53
Citation in format AMSBIB
\Bibitem{LutYul10}
\by V.~I.~Lutsenko, R.~S.~Yulmukhametov
\paper On the accuracy of asymptotic approximation of subharmonic functions by the logarithm of the modulus of an entire function
\jour Ufimsk. Mat. Zh.
\yr 2010
\vol 2
\issue 3
\pages 46--53
\mathnet{http://mi.mathnet.ru/ufa62}
\zmath{https://zbmath.org/?q=an:1240.30185}
\elib{https://elibrary.ru/item.asp?id=15240755}
Linking options:
  • https://www.mathnet.ru/eng/ufa62
  • https://www.mathnet.ru/eng/ufa/v2/i3/p46
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:466
    Full-text PDF :155
    References:78
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024