Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2021, Volume 13, Issue 4, Pages 112–122
DOI: https://doi.org/10.13108/2021-13-4-112
(Mi ufa595)
 

Dual spaces for weighted spaces of locally integrable functions

R. S. Yulmukhametov

Institute of Mathematics, Ufa Federal Research Center, RAS, Chernyshevsky str. 112, 450008, Ufa, Russia
References:
Abstract: In this work we consider weighted $L_2$ spaces on convex domains in $\mathbb{R}^n$ and we study the problem on describing the dual space in terms of the Laplace-Fourier transform.
Let $D$ be a bounded convex domain in $\mathbb{R}^n$ and $\varphi $ be a convex function on this domain. By $L_2(D,\varphi)$ we denote the space of locally integrable functions $D$ with a finite norm
\begin{equation*} \|f\|^2:= \int \limits_D|f(t)|^2e^{-2\varphi (t)}dt. \end{equation*}

Under some restrictions for the weight $\varphi$ we prove that an entire function $F$ is represented as the Fourier – Laplace transform of a function in $L_2(D,\varphi)$, that is,
\begin{equation*} F(\lambda)=\int \limits_De^{t\lambda -2\varphi (t)}\overline {f(t)}dt, f\in L_2(D,\varphi), \end{equation*}
for some function $f\in L_2(D,\varphi)$ if and only if
$$ \|F\|^2:=\int \frac {|F(z)|^2}{K(z)}\det G(\widetilde \varphi,x)dydx<\infty, $$
where $ G(\widetilde \varphi,x)$ is the Hessian matrix of the function $\widetilde \varphi $,
\begin{equation*} K(\lambda):=\|\delta_\lambda \|^2, \lambda \in \mathbb{C}^n. \end{equation*}
As an example we show that for the case, when $D$ is the unit circle and $\varphi (t)= (1-|t|)^\alpha $, the space of Fourier-Laplace transforms is isomorphic to the space of entire functions $F(z)$, $z=x+iy\in \mathbb{C}^2$, for which
\begin{equation*} \|F\|^2:=\int |F(x+iy)|^2e^{-2|x| -2(a\beta)^{\frac 1{\beta +1}}(a+1)|x|^{\frac \beta {\beta +1}}}(1+|x|)^{\frac {\alpha -3}2}dxdy<\infty, \end{equation*}
where $\alpha =\frac{\beta}{\beta +1}$.
Keywords: weighted spaces, Fourier-Laplace transform, entire functions.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1393
The research is made in the framework of executing the Developing Program of Scientific and Educational mathematical center of Privolzhsky Federal District (agreement no. 075-02-2021-1393).
Received: 25.08.2021
Russian version:
Ufimskii Matematicheskii Zhurnal, 2021, Volume 13, Issue 4, Pages 115–125
Bibliographic databases:
Document Type: Article
UDC: 517.968.72
MSC: 32A15, 42B10
Language: English
Original paper language: Russian
Citation: R. S. Yulmukhametov, “Dual spaces for weighted spaces of locally integrable functions”, Ufimsk. Mat. Zh., 13:4 (2021), 115–125; Ufa Math. J., 13:4 (2021), 112–122
Citation in format AMSBIB
\Bibitem{Yul21}
\by R.~S.~Yulmukhametov
\paper Dual spaces for weighted spaces of locally integrable functions
\jour Ufimsk. Mat. Zh.
\yr 2021
\vol 13
\issue 4
\pages 115--125
\mathnet{http://mi.mathnet.ru/ufa595}
\transl
\jour Ufa Math. J.
\yr 2021
\vol 13
\issue 4
\pages 112--122
\crossref{https://doi.org/10.13108/2021-13-4-112}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000734858600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124293359}
Linking options:
  • https://www.mathnet.ru/eng/ufa595
  • https://doi.org/10.13108/2021-13-4-112
  • https://www.mathnet.ru/eng/ufa/v13/i4/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:149
    Russian version PDF:84
    English version PDF:18
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024