Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2021, Volume 13, Issue 4, Pages 41–49
DOI: https://doi.org/10.13108/2021-13-4-41
(Mi ufa590)
 

Convergence rate of one class of differentiating sums

M. A. Komarov

Vladimir State University, Gorkii str. 87, 600000, Vladimir, Russia
References:
Abstract: We consider a differentiation formula for functions analytic in the circle $|z|<1$: $azf'(z)=nf(0)-\sum_{k=1}^n f(\lambda_k z)+R_n(z)$. Here $a\ne 0$ is a real constant, $n=1,2,\dots$, while complex parameters $\lambda_k=\lambda_{n,k}(a)$, $k=1,\dots,n$, are defined as the unique solution of a discrete moment system for Newtonian power sums $\lambda_1^m+\dots+\lambda_n^m=-ma$, $m=1,\dots,n$. Under such choice of the parameters, the function $R_n(z)=R_n(a,f;z)$, which is the remainder in the formula, is of order $O(z^{n+1})$ as $z\to 0$. In this work we show that for each fixed $a>0$ and each $n\geqslant 3\alpha$ ($\alpha:=\max\{a;1\}$) the domain of the applicability of the formula contains the circle $|z|<\exp(-3\sqrt{v}-2v)$, $v:=\alpha/(n+1)$, the radius of which tends to one as $n\to \infty$. We establish an exponential convergence rate of differentiating sums to $nf(0)-a zf'(z)$ in the same circle. This result completes and extends essentially previous results by V.I. Danchenko (2008) and P.V. Chunaev (2020), which, respectively for the cases $a=-1$ and $-n\le a<0$ established the convergence of the differentiating formula but only in the domains contained in fixed compact subsets of the unit circle. The proof of the main results of the paper is based essentially on an approach for constructing a solution for the mentioned moment system; this approach differs essentially from that by Danchenko and Chunaev.
Keywords: differentiation of analytic functions, differentiating sums, $h$-sums, convergence rate.
Received: 02.09.2020
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 30E10, 41A25, 65D25
Language: English
Original paper language: Russian
Citation: M. A. Komarov, “Convergence rate of one class of differentiating sums”, Ufa Math. J., 13:4 (2021), 41–49
Citation in format AMSBIB
\Bibitem{Kom21}
\by M.~A.~Komarov
\paper Convergence rate of one class of differentiating sums
\jour Ufa Math. J.
\yr 2021
\vol 13
\issue 4
\pages 41--49
\mathnet{http://mi.mathnet.ru//eng/ufa590}
\crossref{https://doi.org/10.13108/2021-13-4-41}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000734858100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124256503}
Linking options:
  • https://www.mathnet.ru/eng/ufa590
  • https://doi.org/10.13108/2021-13-4-41
  • https://www.mathnet.ru/eng/ufa/v13/i4/p42
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024