Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2010, Volume 2, Issue 3, Pages 17–30 (Mi ufa59)  

The test: does the input flow intensity grow in queuing system?

N. K. Bakirov, M. V. Snachev

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia
References:
Abstract: The mathematical model of a queuing system with the Poisson time moments of inputs is considered. Practically, in banking and in insurance the following question is vital: does the input flow intensity grow on a certain time interval? In this article the tests for this statistical hypothesis are proposed and their asymptotic properties are examined.
Keywords: queueing system, Poisson flow, input flow intensity, likelihood ratio test, least squares method, hypothesis of Poisson flow homogeneity.
Received: 01.03.2010
Bibliographic databases:
Document Type: Article
UDC: 519.248
Language: Russian
Citation: N. K. Bakirov, M. V. Snachev, “The test: does the input flow intensity grow in queuing system?”, Ufimsk. Mat. Zh., 2:3 (2010), 17–30
Citation in format AMSBIB
\Bibitem{BakSna10}
\by N.~K.~Bakirov, M.~V.~Snachev
\paper The test: does the input flow intensity grow in queuing system?
\jour Ufimsk. Mat. Zh.
\yr 2010
\vol 2
\issue 3
\pages 17--30
\mathnet{http://mi.mathnet.ru/ufa59}
\zmath{https://zbmath.org/?q=an:1240.60244}
Linking options:
  • https://www.mathnet.ru/eng/ufa59
  • https://www.mathnet.ru/eng/ufa/v2/i3/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:442
    Full-text PDF :122
    References:67
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024