Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2021, Volume 13, Issue 3, Pages 27–35
DOI: https://doi.org/10.13108/2021-13-3-27
(Mi ufa574)
 

Exponential series in normed spaces of analytic functions

R. A. Bashmakova, K. P. Isaevb, A. A. Makhotaa

a Bashkir State University, Zaki Validi str. 32, 450074, Ufa, Russia
b Institute of Mathematics, Ufa Federal Research Center, RAS, Chernyshebvsky str. 112, 450008, Ufa, Russia
References:
Abstract: There is a classical well-known theorem by A.F. Leontiev on representing functions analytic in a convex domain $D$ and continuous up to the boundary by series of form $\sum_{k=1}^\infty f_ke^{\lambda_kz}$ converging in the topology of the space $H(D)$, that is, uniformly on compact subsets in $D$.
In the paper we prove the possibility of representing the functions in
\begin{equation*} A_0(D)=\left \{f\in H(D)\bigcap C(\overline D):\ \|f \|:=\sup_{z\in \overline D}|f(z)|\right \} \end{equation*}
by the exponential series converging in a stronger topology, namely, there exists an integer number $s>0$ such that
1) for each bounded convex domain $D$ there exists a system of exponentials $e^{\lambda_kz},$ ${k\in \mathbb{N}}$, such that each function $f\in H(D)\bigcap C^{(s)}(\overline D)$ is represented as a series over this system converging in the norm of the space $A_0(D)$;
2) for each bounded convex domain $D$ there exists a system of exponentials $e^{\lambda_kz},$ ${ k\in \mathbb{N}}$ such that each function $f\in A_0(D)$ is represented as a series over this system converging in the norm
\begin{equation*} \|f\| = \sup_{z\in D}|f(z)|(d(z))^s, \end{equation*}
where $d(z)$ is the distance from a point $z$ to the boundary of the domain $D$. The number $s$ is related with the existence of entire functions with a maximal possible asymptotic estimate.
In particular cases, when $D$ is a polygon or a domina with a smooth boundary possessing a smooth curvature separated from zero, we can assume that $s=4$.
Keywords: analytic function, entire function, Fourier–Laplace transform, interpolation, exponential series.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1393
The research is made in the framework of executing the Developing Program of Scientific and Educational mathematical center of Privolzhsky Federal District (agreement no. 075-02-2021-1393).
Received: 08.06.2021
Bibliographic databases:
Document Type: Article
UDC: 517.537+517.547
MSC: 30B50, 30D20
Language: English
Original paper language: Russian
Citation: R. A. Bashmakov, K. P. Isaev, A. A. Makhota, “Exponential series in normed spaces of analytic functions”, Ufa Math. J., 13:3 (2021), 27–35
Citation in format AMSBIB
\Bibitem{BasIsaMak21}
\by R.~A.~Bashmakov, K.~P.~Isaev, A.~A.~Makhota
\paper Exponential series in normed spaces of analytic functions
\jour Ufa Math. J.
\yr 2021
\vol 13
\issue 3
\pages 27--35
\mathnet{http://mi.mathnet.ru//eng/ufa574}
\crossref{https://doi.org/10.13108/2021-13-3-27}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000755727100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115380236}
Linking options:
  • https://www.mathnet.ru/eng/ufa574
  • https://doi.org/10.13108/2021-13-3-27
  • https://www.mathnet.ru/eng/ufa/v13/i3/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:157
    Russian version PDF:70
    English version PDF:23
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024