Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2021, Volume 13, Issue 3, Pages 17–26
DOI: https://doi.org/10.13108/2021-13-3-17
(Mi ufa573)
 

Dirichlet boundary value problem for equations describing flows of a nonlinear viscoelastic fluid in a bounded domain

M. A. Artemov, Yu. N. Babkina

Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia
References:
Abstract: We consider a boundary value problem for a mathematical model describing a stationary isotermic flow of a nonlinear viscoelastic liquid with a varying viscosity depending on the shear rate in a bounded three- or two-dimensional domain with a sufficiently smooth boundary. We assume that the viscosity function is continuous and bounded. The considered model is a system of strongly nonlinear third order partial differential equations. The boundary of the flow region is subject to the homogeneous Dirichlet boundary condition, which corresponds to the standard condition of adhesion on the solid walls of a vessel. This boundary value problem is considered in a weak (generalized) sense. A weak solution is a pair of functions “velocity-pressure” satisfying the equations of motion in the distribution sense. Using the regularization method via introducing terms with an additional viscosity into the equations, we construct a family of auxiliary approximating problems. We provide an interpretation of the problems of this family in the form of operator equation with a continuous nonlinearoperator satisfying the $\alpha$-monotonicity condition. On the base of a solvability theorem for equations with $\alpha$-operators, we prove the existence of at least one solution for each positive value of the additional viscosity. We obtain estimates for the norms of solutions independent of the additional viscosity parameter. The solution to the original boundary value problem is obtained as the limit of the sequence of solutions to approximating problems as the additional viscosity tends to zero. The passage to the limit is carried out on the base of well-known results on the compactness of the embedding of Sobolev spaces and Lebesgue theorem on dominated convergence. In addition, we establish an energy-type estimate for the vector velocity function.
Keywords: Dirichlet boundary value problem, existence theorem, weak solution, $\alpha$-operator, regularization method, additional viscosity, nonlinear viscoelastic fluid, polymer solution.
Received: 19.07.2020
Russian version:
Ufimskii Matematicheskii Zhurnal, 2021, Volume 13, Issue 3, Pages 17–26
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 35Q35, 35A01
Language: English
Original paper language: Russian
Citation: M. A. Artemov, Yu. N. Babkina, “Dirichlet boundary value problem for equations describing flows of a nonlinear viscoelastic fluid in a bounded domain”, Ufimsk. Mat. Zh., 13:3 (2021), 17–26; Ufa Math. J., 13:3 (2021), 17–26
Citation in format AMSBIB
\Bibitem{ArtBab21}
\by M.~A.~Artemov, Yu.~N.~Babkina
\paper Dirichlet boundary value problem for equations describing flows of a nonlinear viscoelastic fluid in a bounded domain
\jour Ufimsk. Mat. Zh.
\yr 2021
\vol 13
\issue 3
\pages 17--26
\mathnet{http://mi.mathnet.ru/ufa573}
\transl
\jour Ufa Math. J.
\yr 2021
\vol 13
\issue 3
\pages 17--26
\crossref{https://doi.org/10.13108/2021-13-3-17}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000755727100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115365315}
Linking options:
  • https://www.mathnet.ru/eng/ufa573
  • https://doi.org/10.13108/2021-13-3-17
  • https://www.mathnet.ru/eng/ufa/v13/i3/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:145
    Russian version PDF:58
    English version PDF:20
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024