Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2021, Volume 13, Issue 2, Pages 3–7
DOI: https://doi.org/10.13108/2021-13-2-3
(Mi ufa557)
 

On integrability of $O(3)$–model

A. B. Borisov

M.N. Mikheev Institute of Metal Physics, Ural Branch of RAS Sofia Kovalevskaya str. 18, 620108, Ekaterinburg, Russia
References:
Abstract: A three-dimensional $O(3)$ model for a unit vector $\mathbf{n}(\mathbf{r})$ has numerous application in the field theory and in the physics of condensed matter. We prove that this model is integrable under some differential constraint, that is, under certain restrictions for the gradients of fields $\Theta(\mathbf{r})$, $\Phi(\mathbf{r})$ parametrizing the vector $\mathbf{n}(\mathbf{r})$). Under the presence of the differential constraint, the equations of the models are reduced to a one-dimensional sine-Gordon equation determining the dependence of the field $\Theta(\mathbf{r})$ on an auxiliary field $a(\mathbf{r})$ and to a system of two equations $(\nabla S)(\nabla S)=0$, $\Delta S =0$ for a complex-valued function $S(\mathbf{r})=a(\mathbf{r}) + \mathrm{i} \Phi(\mathbf{r})$. We show that the solution of this system provide all known before exact solutions of models, namely, two-dimensional magnetic instantons and three-dimensional structures of hedgehog type. We find an exact solution for the field $S(\mathbf{r})$ as an arbitrary implicity function of two variables, which immediately represents the solution for the fields $\Theta(\mathbf{r})$, $\Phi(\mathbf{r})$ in an implicit form. We show that the found in this way exact solution of the system for the field $S(\mathbf{r})$ leads one to exact solution of equations of $O(3)$–model in the form of an arbitrary implicit function of two variables.
Keywords: integrable system, $O(3)$–model, differential substitution, quasilinear equation, general solution.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation АААА-А18-118020190095-4
The work is made within the framework of state task by the Ministry of Education and Science of Russia (project “Kvant”, registration no. AAAA-A18-118020190095-4).
Received: 10.03.2021
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35C05, 35J60, 35A08
Language: English
Original paper language: Russian
Citation: A. B. Borisov, “On integrability of $O(3)$–model”, Ufa Math. J., 13:2 (2021), 3–7
Citation in format AMSBIB
\Bibitem{Bor21}
\by A.~B.~Borisov
\paper On integrability of $O(3)$--model
\jour Ufa Math. J.
\yr 2021
\vol 13
\issue 2
\pages 3--7
\mathnet{http://mi.mathnet.ru//eng/ufa557}
\crossref{https://doi.org/10.13108/2021-13-2-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000678396900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111722956}
Linking options:
  • https://www.mathnet.ru/eng/ufa557
  • https://doi.org/10.13108/2021-13-2-3
  • https://www.mathnet.ru/eng/ufa/v13/i2/p6
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:184
    Russian version PDF:85
    English version PDF:23
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024