Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2020, Volume 12, Issue 3, Pages 107–122
DOI: https://doi.org/10.13108/2020-12-3-107
(Mi ufa530)
 

This article is cited in 5 scientific papers (total in 5 papers)

Solvability of higher order three-point iterative systems

K. R. Prasada, M. Rashmitaa, N. Sreedharb

a Department of Applied Mathematics, College of Science and Technology, Andhra University, Visakhapatnam, 530 003, India
b Department of Mathematics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530 045, India
References:
Abstract: In this paper, we consider an iterative system of nonlinear $n^{\text{th}}$ order differential equations:
$$ y_i^{(n)}(t)+\lambda_i p_i(t)f_i(y_{i+1}(t))=0,\qquad 1\leq i\leq m,\qquad y_{m+1}(t)= y_1(t),\qquad t\in[0,1], $$
with three-point non-homogeneous boundary conditions
$$ \begin{gathered} y_i(0)={y_i}'(0)=\cdots=y_i^{(n-2)}(0)=0, \\ \alpha_iy_i^{(n-2)}(1)-\beta_i y_i^{(n-2)}(\eta)=\mu_i,\qquad 1\leq i\leq m, \end{gathered} $$
where $n\geq 3,$ $\eta\in (0,1)$, $\mu_i\in (0, \infty)$ is a parameter, $f_i:\mathbb{R}^+ \rightarrow \mathbb{R}^+ $ is continuous, $p_i:[0,1] \rightarrow \mathbb{R}^+$ is continuous and $p_i$ does not vanish identically on any closed subinterval of $[0,1]$ for $1\leq i\leq m$. We express the solution of the boundary value problem as a solution of an equivalent integral equation involving kernels and obtain bounds for these kernels. By an application of Guo–Krasnosel'skii fixed point theorem on a cone in a Banach space, we determine intervals of the eigenvalues $\lambda_1,\lambda_2,\cdots,\lambda_m$ for which the boundary value problem possesses a positive solution. As applications, we provide examples demonstrating our results.
Keywords: boundary value problem, iterative system, kernel, three-point, eigenvalues, cone, positive solution.
Funding agency Grant number
Department of Science and Technology, India
M. Rashmita is thankful to DST-INSPIRE, Government of India, New Delhi for awarding JRF.
Received: 12.12.2019
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 334B18, 34A40, 34B15
Language: English
Original paper language: English
Citation: K. R. Prasad, M. Rashmita, N. Sreedhar, “Solvability of higher order three-point iterative systems”, Ufa Math. J., 12:3 (2020), 107–122
Citation in format AMSBIB
\Bibitem{PraRasSre20}
\by K.~R.~Prasad, M.~Rashmita, N.~Sreedhar
\paper Solvability of higher order three-point iterative systems
\jour Ufa Math. J.
\yr 2020
\vol 12
\issue 3
\pages 107--122
\mathnet{http://mi.mathnet.ru//eng/ufa530}
\crossref{https://doi.org/10.13108/2020-12-3-107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000607973900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099072002}
Linking options:
  • https://www.mathnet.ru/eng/ufa530
  • https://doi.org/10.13108/2020-12-3-107
  • https://www.mathnet.ru/eng/ufa/v12/i3/p109
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:134
    Russian version PDF:59
    English version PDF:24
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025