Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2020, Volume 12, Issue 3, Pages 60–68
DOI: https://doi.org/10.13108/2020-12-3-60
(Mi ufa528)
 

This article is cited in 1 scientific paper (total in 1 paper)

On solvability of class of nonlinear equations with small parameter in Banach space

E. M. Mukhamadiev, A. B. Nazimov, A. N. Naimov

Vologda State University, Lenin str., 15, 160000, Vologda, Russia
References:
Abstract: We study the solvability of one class of nonlinear equations with a small parameter in a Banach space. The main difficulty is that the principal linear part of this equation is non-invertible. To study the solvability of the considered class of equations we apply a new method combining the Pontryagin method from the theory of autonomous systems on the plane and the methods of calculating the rotations of vector fields. We also employ a scheme for matrix representations of split operators known in the bifurcation theory of solutions to nonlinear equations. In contrast to the Pontryagin method, we do not assume a differentiability for a nonlinear mapping and apply methods for calculating the rotations of vector fields. On the base of the proposed method we formulate and prove a theorem on solvability conditions for the considered class of nonlinear equations. As an application, we study two periodic problems for nonlinear differential equations with a small parameter, namely, a periodic problem for the system of ordinary differential equations in a resonance case and a periodic problem for a nonlinear elliptic equations with a non-invertible linear part.
Keywords: nonlinear equation with small parameter, Pontryagin method, rotation of vector field, periodic problem.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00103_а
18-47-350001_р_а
The work is partially supported by Russian Foundation for Basic Researches (projects nos. 18-47-350001r-a, 19-01-00103a).
Received: 11.12.2019
Bibliographic databases:
Document Type: Article
UDC: 517.988.63+517.927.4+517.956.25
Language: English
Original paper language: Russian
Citation: E. M. Mukhamadiev, A. B. Nazimov, A. N. Naimov, “On solvability of class of nonlinear equations with small parameter in Banach space”, Ufa Math. J., 12:3 (2020), 60–68
Citation in format AMSBIB
\Bibitem{MuhNazNai20}
\by E.~M.~Mukhamadiev, A.~B.~Nazimov, A.~N.~Naimov
\paper On solvability of class of nonlinear equations with small parameter in Banach space
\jour Ufa Math. J.
\yr 2020
\vol 12
\issue 3
\pages 60--68
\mathnet{http://mi.mathnet.ru//eng/ufa528}
\crossref{https://doi.org/10.13108/2020-12-3-60}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000607973900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097549579}
Linking options:
  • https://www.mathnet.ru/eng/ufa528
  • https://doi.org/10.13108/2020-12-3-60
  • https://www.mathnet.ru/eng/ufa/v12/i3/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025