Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2020, Volume 12, Issue 2, Pages 28–34
DOI: https://doi.org/10.13108/2020-12-2-28
(Mi ufa513)
 

This article is cited in 1 scientific paper (total in 1 paper)

On families of isospectral Sturm–Liouville boundary value problems

O. E. Mirzaev, A. B. Khasanov

Samarkand State University, University blv. 15, 140104, Samarkand, Uzbekistan
References:
Abstract: The work is devoted to describing all boundary value Sturm–Liouville problems on a finite segment with the same spectrum. Such problems are called isospectral and they were studied in works by E.L. Isaacson, H.P. McKean, B.E. Dahlberg, E. Trubowitz, M. Jodeit, B.M. Levitan, Y.A. Ashrafyan, T.N. Harutyunyan. Nowadays, there are various methods for solving inverse spectral problems: the method of transformation operator, that is, Gelfand-Levitan method, the method of spectral mappings, the method of etalon models and others. V.A. Marchenko showed, that the Sturm-Liouville operator on a finite segment is determined uniquely by its eigenvalues and a sequence of normalizing constants, that is, by its spectral function. I.M. Gelfand and B.M. Levitan found necessary and sufficient conditions on recovering boundary value Sturm–Liouville problems by their spectral functions. This method is based on recovering a potential and boundary conditions by spectral data by means of a Fredholm integral equation of a second kind with parameters. While constructing isospectral boundary value Sturm–Liouville problems with a prescribed spectrum $n^{2}$, $n \ge 0$, we have employed the Gelfand–Levitan method. The main result of the work is an algorithm for recovering a family of boundary value Sturm-Liouville problems $L=L(q(x),h, H)$, whose spectra satisfy the condition $\sigma(L)=\{n^2,n\ge 0\}$. At that, the found coefficients $ q=q(x, \gamma_1, \gamma_2, \ldots)$, $h=h(\gamma_1, \gamma_2, \ldots)$, $H=H(\gamma_1, \gamma_2, \ldots)$ depend on infinitely many parameters $\gamma_j$, $j= \overline{1,\infty}$.
Keywords: Sturm–Liouville problem, eigenvalues, normalizing constants, spectral data, inverse spectral problem, integral equation, isospectral operators.
Funding agency Grant number
Academy of Sciences of the Republic of Uzbekistan ОТ-F4 -04(05)
The work was financially supported by a fundamental project ОT-F4 -04(05) of the Ministry of Innovative Developing of the Republic of Uzbekistan.
Received: 24.10.2019
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: English
Original paper language: Russian
Citation: O. E. Mirzaev, A. B. Khasanov, “On families of isospectral Sturm–Liouville boundary value problems”, Ufa Math. J., 12:2 (2020), 28–34
Citation in format AMSBIB
\Bibitem{MirKha20}
\by O.~E.~Mirzaev, A.~B.~Khasanov
\paper On families of isospectral Sturm--Liouville boundary value problems
\jour Ufa Math. J.
\yr 2020
\vol 12
\issue 2
\pages 28--34
\mathnet{http://mi.mathnet.ru//eng/ufa513}
\crossref{https://doi.org/10.13108/2020-12-2-28}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000607969100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097366441}
Linking options:
  • https://www.mathnet.ru/eng/ufa513
  • https://doi.org/10.13108/2020-12-2-28
  • https://www.mathnet.ru/eng/ufa/v12/i2/p28
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:172
    Russian version PDF:81
    English version PDF:18
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024