Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2020, Volume 12, Issue 1, Pages 114–120
DOI: https://doi.org/10.13108/2020-12-1-114
(Mi ufa507)
 

This article is cited in 3 scientific papers (total in 3 papers)

Uniqueness theorems for meromorphic functions on annuli

A. Rathod

B.L.D.E.Association's S.B. Arts and K.C.P. Science College, Department of Mathematics, SMT. Bangaramma Sajjan Campus, Solapur Road, Vijayapura-586103, Karnataka, India
References:
Abstract: In this paper, we discuss the uniqueness problems of meromorphic functions on annuli. We prove a general theorem on the uniqueness of meromorphic functions on annuli. An analogue of a famous Nevanlinna's five-value theorem is proposed. The main result in this paper is an analog of a result on the plane $\mathbb{C}$ obtained by H.S. Gopalkrishna and Subhas S. Bhoosnurmath for an annuli. That is, let $f_{1}(z)$ and $f_{2}(z)$ be two transcendental meromorphic functions on the annulus $\mathbb{A}=\left\{z:\frac{1}{R_{0}}<|z|<R_{0}\right\}$, where $1<R_{0}\leq +\infty.$ Let $a_{j}$, $j=1,2,\ldots,q)$, be $q$ distinct complex numbers in $\overline{\mathbb{C}}$, and $k_{j}$, $j=1,2,\ldots,q$ be positive integers or $\infty$ satisfying
\begin{equation*} k_{1}\geq k_{2}\geq \ldots \geq k_{q}. \end{equation*}
If
\begin{equation*} \overline{E}_{k_{j})}(a_{j},f_{1})=\overline{E}_{k_{j})}(a_{j},f_{2}), j=1,2,\ldots,q, \end{equation*}
and
\begin{equation*} \sum_{j=2}^{q}\frac{k_{j}}{k_{j}+1}-\frac{k_{1}}{k_{1}+1}>2, \end{equation*}
then $f_{1}(z)\equiv f_{2}(z).$
Keywords: Nevanlinna theory, meromorphic functions, annuli.
Received: 04.06.2019
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 30D35
Language: English
Original paper language: English
Citation: A. Rathod, “Uniqueness theorems for meromorphic functions on annuli”, Ufa Math. J., 12:1 (2020), 114–120
Citation in format AMSBIB
\Bibitem{Rat20}
\by A.~Rathod
\paper Uniqueness theorems for meromorphic functions on annuli
\jour Ufa Math. J.
\yr 2020
\vol 12
\issue 1
\pages 114--120
\mathnet{http://mi.mathnet.ru//eng/ufa507}
\crossref{https://doi.org/10.13108/2020-12-1-114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000526181300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097249484}
Linking options:
  • https://www.mathnet.ru/eng/ufa507
  • https://doi.org/10.13108/2020-12-1-114
  • https://www.mathnet.ru/eng/ufa/v12/i1/p115
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024