Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2020, Volume 12, Issue 1, Pages 30–42
DOI: https://doi.org/10.13108/2020-12-1-30
(Mi ufa501)
 

Equivalence criterion for two asymptotic formulae

Kh. K. Ishkin, R. I. Marvanov

Bashkir State University, Zaki Validi str., 32, 450074, Ufa, Russia
References:
Abstract: We study the equivalence conditions of two asymptotic formulae for an arbitrary non-decreasing unbounded sequence $ \{\lambda_n \} $. We show that if $g$ is a non-decreasing and unbounded at infinity function, $\{f_n\}$ is a non-decreasing sequence asymptotically inverse to the function $g$, then for each sequence of real numbers $\lambda_n$ satisfying an asymptotic estimate $\lambda_n\sim f_n$, $n\to+\infty,$ the estimate $N(\lambda)\sim g(\lambda)$, $ \lambda\to+\infty$, holds if and only if $g$ is a pseudo-regularly varying function (PRV-function). We find a necessary and sufficient condition for the non-decreasing sequence $\{f_n\}$ and the function $g$, under which the second formula implies the first one. Employing this criterion, we find a non-trivial class of perturbations preserving the asymptotics of the spectrum of an arbitrary closed densely defined in a separable Hilbert space operator possessing at least one ray of the best decay of the resolvent. This result is the first generalization of the a known Keldysh theorem to the case of operators not close to self-adjoint or normal, whose spectra can strongly vary under small perturbations. We also obtain sufficient conditions for a potential ensuring that the spectrum of the Strum-Liouville operator on a curve has the same asymptotics as for the potential with finitely many poles in a convex hull of the curve obeying the trivial monodromy condition. These sufficient conditions are close to necessary ones.
Keywords: asymptotic equivalence, functions preserving equivalence, pseudo-regularly varying (PRV) functions, non-self-adjoint operators, Keldysh theorem, spectrum localization, potentials with trivial monodromy.
Funding agency Grant number
Russian Science Foundation 18-11-00002
The research is financially supported by grant of Russian Science Foundation (project no. 18-11-00002).
Received: 20.06.2019
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: 34D05, 35P20, 60F17
Language: English
Original paper language: Russian
Citation: Kh. K. Ishkin, R. I. Marvanov, “Equivalence criterion for two asymptotic formulae”, Ufa Math. J., 12:1 (2020), 30–42
Citation in format AMSBIB
\Bibitem{IshMar20}
\by Kh.~K.~Ishkin, R.~I.~Marvanov
\paper Equivalence criterion for two asymptotic formulae
\jour Ufa Math. J.
\yr 2020
\vol 12
\issue 1
\pages 30--42
\mathnet{http://mi.mathnet.ru//eng/ufa501}
\crossref{https://doi.org/10.13108/2020-12-1-30}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000526181300003}
Linking options:
  • https://www.mathnet.ru/eng/ufa501
  • https://doi.org/10.13108/2020-12-1-30
  • https://www.mathnet.ru/eng/ufa/v12/i1/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:334
    Russian version PDF:206
    English version PDF:25
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024