Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2019, Volume 11, Issue 4, Pages 140–150
DOI: https://doi.org/10.13108/2019-11-4-140
(Mi ufa498)
 

This article is cited in 1 scientific paper (total in 1 paper)

Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one

S. N. Lakaeva, M. Darusb, S. T. Dustovc

a Samarkand State University, University Boulvard 15, 140104, Samarkand, Uzbekistan
b University Kebangsaan Malaysia, 43600, Selangor, Malaysia
c Navoi State Pedagogical Institute, Janubiy 1-A, Navoi, 210102, Navoi, Uzbekistan
References:
Abstract: In this work we consider a family $H_\mu(p),$ $\mu>0,$ $p\in\mathbb{T}^3$, of the generalized Friedrichs models with the perturbation of rank one. This system describes a system of two particles moving on the three dimensional lattice $\mathbb{Z}^3$ and interacting via a pair of local repulsive potentials. One of the reasons to consider such family of the generalized Friedrichs models is that this family generalizes and involves some important behaviors of the Hamiltonians for systems of both bosons and fermions on lattices. In the work, we study the existence or absence of the eigenvalues of the operator $H_\mu(p)$ located outside the essential spectrum depending on the values of $\mu>0$ and $p\in U_{\delta}(p_{\,0})\subset\mathbb{T}^3$. We prove a analytic dependence on the parameters for such eigenvalue and an associated eigenfunction and the latter is found in a certain explicit form. We prove the existence of coupling constant threshold $\mu=\mu(p)>0$ for the operator $H_\mu(p)$, $p\in U_{\delta}(p_{\,0})$, namely, we show that the operator $H_\mu(p)$ has no eigenvalue for all $0<\mu<\mu(p)$ and there exists a unique eigenvalue $z(\mu,p)$ for each $\mu>\mu(p)$ and this eigenvalue is located above the threshold $z=M(p)$. We find necessary and sufficient conditions allowing us to determine whether the threshold $z=M(p)$ is an eigenvalue or a virtual level or a regular point in the essential spectrum of the operator $H_\mu(p),$ $p\in U_{\delta}(p_{\,0})$.
Keywords: coupling constant threshold, repulsive potential, eigenvalue, generalized Friedrichs model, regular point.
Funding agency Grant number
Fundamental Science Foundation of Uzbekistan OT-F4-66
Universiti Kebangsaan Malaysia GUP-2019-032
The work was supported by the Fundamental Science Foundation of Uzbekistan (grant no. OT-F4-66) and by the grant no. GUP-2019-032.
Received: 06.11.2018
Bibliographic databases:
Document Type: Article
MSC: 35P15, 47A10
Language: English
Original paper language: English
Citation: S. N. Lakaev, M. Darus, S. T. Dustov, “Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one”, Ufa Math. J., 11:4 (2019), 140–150
Citation in format AMSBIB
\Bibitem{LakDarDus19}
\by S.~N.~Lakaev, M.~Darus, S.~T.~Dustov
\paper Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 4
\pages 140--150
\mathnet{http://mi.mathnet.ru//eng/ufa498}
\crossref{https://doi.org/10.13108/2019-11-4-140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511174800012}
Linking options:
  • https://www.mathnet.ru/eng/ufa498
  • https://doi.org/10.13108/2019-11-4-140
  • https://www.mathnet.ru/eng/ufa/v11/i4/p139
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:197
    Russian version PDF:63
    English version PDF:18
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024