Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2019, Volume 11, Issue 4, Pages 33–39
DOI: https://doi.org/10.13108/2019-11-4-33
(Mi ufa490)
 

Neumann boundary value problem for system of equations of non-equilibrium sorption

I. A. Kaliev, G. S. Sabitova

Sterlitamak Branch of Bashkir State University, Lenin av. 49, 453103, Sterlitamak, Russia
References:
Abstract: Filtration of liquids and gases containing associated (dissolved, suspended) solids in porous media is accompanied by diffusion of these substances and mass transfer between the liquid (gas) and solid phases. In this work, we study the system of equations modeling the process of a non-equilibrium sorption. We prove an existence and uniqueness theorem for a multi-dimensional Neumann initial-boundary value problem in the Hölder classes of functions. We obtain a maximum principle, which plays an important role in the proof of the theorem. The uniqueness of the solution follows this principle. The existence of a solution to the problem is shown by Schauder fixed point theorem for a completely continuous operator; we describe a corresponding operator. We obtain estimates ensuring the complete continuity of the constructed operator and the mapping of some closed set of functions into itself over a small time interval. Then we obtain the estimates allowing us to continue the solution up to arbitrary finite time.
Keywords: modeling of process of non-equilibrium sorption, Neumann initial boundary value problem, global unique solvability.
Received: 07.08.2018
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 35Q35, 76S05
Language: English
Original paper language: Russian
Citation: I. A. Kaliev, G. S. Sabitova, “Neumann boundary value problem for system of equations of non-equilibrium sorption”, Ufa Math. J., 11:4 (2019), 33–39
Citation in format AMSBIB
\Bibitem{KalSab19}
\by I.~A.~Kaliev, G.~S.~Sabitova
\paper Neumann boundary value problem for system of equations of non-equilibrium sorption
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 4
\pages 33--39
\mathnet{http://mi.mathnet.ru//eng/ufa490}
\crossref{https://doi.org/10.13108/2019-11-4-33}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511174800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85106849563}
Linking options:
  • https://www.mathnet.ru/eng/ufa490
  • https://doi.org/10.13108/2019-11-4-33
  • https://www.mathnet.ru/eng/ufa/v11/i4/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:218
    Russian version PDF:90
    English version PDF:29
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024