Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2019, Volume 11, Issue 4, Pages 3–12
DOI: https://doi.org/10.13108/2019-11-4-3
(Mi ufa487)
 

A one-radius theorem on a sphere with pricked point

N. P. Volchkovaa, Vit. V. Volchkovb

a Donetsk National Technical University, Artem str. 58, 83000, Donetsk
b Donetsk National University, Universitetskaya str. 24, 83001, Donetsk
References:
Abstract: We considers local properties of mean periodicity on the two-dimensional sphere $\mathbb{S}^2$. According to the classical properties of periodic functions, each function continuous on the unit circle $\mathbb{S}^1$ and possessing zero integrals over any interval of a fixed length $2r$ on $\mathbb{S}^1$ is identically zero if and only if the number $r/\pi$ is irrational. In addition, there is no non-zero continuous function on $\mathbb{R}$ possessing zero integrals over all segments of fixed length and their boundaries. The aim of this paper is to study similar phenomena on a sphere in $\mathbb{R}^3$ with a pricked point. We study smooth functions on $\mathbb{S}^2\setminus(0,0,-1)$ with zero integrals over all admissible spherical caps and circles of a fixed radius. For such functions, we establish a one-radius theorem, which implies the injectivity of the corresponding integral transform. We also improve the well-known Ungar theorem on spherical means, which gives necessary and sufficient conditions for the spherical cap belong to the class of Pompeiu sets on $\mathbb{S}^2$. The proof of the main results is based on the description of solutions $f\in C^{\infty}(\mathbb{S}^2\setminus(0,0,-1))$ of the convolution equation $(f\ast \sigma_r)(\xi)=0$, $\xi\in B_{\pi-r}$, where $B_{\pi-r}$ is the open geodesic ball of radius $\pi-r$ centered at the point $(0,0,1)$ on $\mathbb{S}^2$ and $\sigma_r$ is the delta-function supported on $\partial B_r$. The key tool used for describing $f$ is the Fourier series in spherical harmonics on $\mathbb{S}^1$. We show that the Fourier coefficients $f_k(\theta)$ of the function $f$ are representable by series in Legendre functions related with the zeroes of the function $P_\nu(\cos r)$. Our main results are consequence of the above representation of the function $f$ and the corresponding properties of the Legendre functions. The results obtained in the work can be used in solving problems associated with ball and spherical means.
Keywords: spherical means, Pompeiu transform, Legendre functions, convolution.
Received: 03.12.2018
Bibliographic databases:
Document Type: Article
UDC: 517.444
MSC: 53C65, 44A35
Language: English
Original paper language: Russian
Citation: N. P. Volchkova, Vit. V. Volchkov, “A one-radius theorem on a sphere with pricked point”, Ufa Math. J., 11:4 (2019), 3–12
Citation in format AMSBIB
\Bibitem{VolVol19}
\by N.~P.~Volchkova, Vit.~V.~Volchkov
\paper A one-radius theorem on a sphere with pricked point
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 4
\pages 3--12
\mathnet{http://mi.mathnet.ru//eng/ufa487}
\crossref{https://doi.org/10.13108/2019-11-4-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511174800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85106811521}
Linking options:
  • https://www.mathnet.ru/eng/ufa487
  • https://doi.org/10.13108/2019-11-4-3
  • https://www.mathnet.ru/eng/ufa/v11/i4/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024