Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2019, Volume 11, Issue 3, Pages 3–10
DOI: https://doi.org/10.13108/2019-11-3-3
(Mi ufa476)
 

This article is cited in 4 scientific papers (total in 4 papers)

Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra

A. M. Bikchentaev

Kazan Federal University, Kremlevskaya str. 18, 420008, Kazan, Russia
References:
Abstract: This work is devoted to non-commutative analogues of classical methods of constructing functional spaces. Let a von Neumann algebra ${\mathcal M}$ of operators act in a Hilbert space $\mathcal{H}$, $\tau$ be a faithful normal semi-finite trace $\mathcal{M}$. Let $ \widetilde{\mathcal{M}}$ be an $\ast$-algebra of $\tau$-measurable operators, $|X|=\sqrt{X^*X}$ for $X \in \widetilde{\mathcal{M}}$. A lineal $\mathcal{E}$ in $\widetilde{\mathcal{M}}$ is called ideal space on $(\mathcal{M}, \tau)$ if
1) $X \in \mathcal{E}$ implies $X^* \in \mathcal{E}$;
2) $X \in \mathcal{E}$, $Y \in \widetilde{\mathcal{M}}$ and $|Y| \leq |X|$ imply $Y \in \mathcal{E}$.
Let $\mathcal{E}$, $\mathcal{F}$ be ideal spaces on $(\mathcal{M}, \tau)$. We propose a method of constructing a mapping $\tilde{\rho} \colon \mathcal{E}\to [0, +\infty]$ with nice properties by employing a mapping $\rho$ on a positive cone $\mathcal{E}^+$. At that, if $\mathcal{E}= \mathcal{M}$ and $\rho = \tau$, then $ \tilde{\rho}(X)=\tau (|X|)$ and if the trace $\tau$ is finite, then $ \tilde{\rho}(X)=\|X\|_1$ for all $X\in \mathcal{M}$. We study the case as $\tilde{\rho}(X)$ is equivalent to the original mapping $\rho (|X|)$. Employing mappings on $\mathcal{E}$ and $\mathcal{F}$, we construct a new mapping with nice properties on the sum $\mathcal{E}+\mathcal{F}$. We provide examples of such mappings. The results are new also for $\ast$-algebra $\mathcal{M}=\mathcal{B}(\mathcal{H})$ of all bounded linear operators in $\mathcal{H}$ equipped with a canonical trace $\tau =\mathrm{tr}$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal trace, measurable operators, ideal space, renormalization.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.9773.2017/8.9
The work is supported by subsidy granted to Kazan Federal University for making a state task in the field of scientific activity (1.9773.2017/8.9).
Received: 22.08.2018
Bibliographic databases:
Document Type: Article
UDC: 517.983:517.986
MSC: 46L10, 47C15, 46L51
Language: English
Original paper language: Russian
Citation: A. M. Bikchentaev, “Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra”, Ufa Math. J., 11:3 (2019), 3–10
Citation in format AMSBIB
\Bibitem{Bik19}
\by A.~M.~Bikchentaev
\paper Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 3
\pages 3--10
\mathnet{http://mi.mathnet.ru//eng/ufa476}
\crossref{https://doi.org/10.13108/2019-11-3-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511172800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078513932}
Linking options:
  • https://www.mathnet.ru/eng/ufa476
  • https://doi.org/10.13108/2019-11-3-3
  • https://www.mathnet.ru/eng/ufa/v11/i3/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024