Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2019, Volume 11, Issue 2, Pages 97–113
DOI: https://doi.org/10.13108/2019-11-2-97
(Mi ufa474)
 

Azarin limiting sets of functions and asymptotic representation of integrals

K. G. Malyutina, T. I. Malyutinaa, T. V. Shevtsovab

a Kursk State University, Radischeva str. 33, 305000, Kursk, Russia
b Southwest State University, 50 October str. 94, 305040, Kursk, Russia
References:
Abstract: In the paper we consider integrals of form
$$\int\limits_a^b f(t)\exp[i\varphi(rt)\ln(rt)]\,dt\,,$$
where $\varphi(r)$ is a smooth increasing function on the semi-axis $[0,\infty)$ such that $\lim\limits_{r\to+\infty}\varphi(r)=\infty\,.$ We find a precise information on their asymptotic behavior and we prove an analogue of Riemann-Lebesgue lemma for trigonometric integrals. By applying this lemma, we succeed to obtain the asymptotic formulae for integrals with an absolutely continuous function. The proposed method of obtaining asymptotic formulae differs from classical method like Laplace method, applications of residua, saddle-point method, etc. To make the presentation more solid, we mostly restrict ourselves by the kernels $\exp[i\ln^p(rt)]$. Appropriate smoothness conditions for the function $f(t)$ allow us to obtain many-terms formulae. The properties of the integrals and the methods of obtaining asymptotic estimates differ in the cases $p\in(0,1)$, $p=1$, $p>1$. As $p\in(0,1)$, the asymptotic expansions are obtained by another method, namely, by expanding the kernel into a series. We consider the cases, when as an absolutely continuous function $f(t)$, we take a product of a power function $t^\rho$ and the Poisson kernel or the conjugate Poisson kernel for the half-plane and as the integration set, the imaginary semi-axis serves. The real and imaginary parts of these integrals are harmonic functions in the complex plane cut along the positive semi-axis. We find the Azarin limiting sets for such functions.
Keywords: Riemann–Lebesgue lemma, trigonometric integral, asymptotic formula, Poisson kernel, harmonic function, Azarin limiting set.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00236_a
The reported study was funded by RFBR according to the research project no. 18-01-00236.
Received: 18.06.2018
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30E15, 31C05
Language: English
Original paper language: Russian
Citation: K. G. Malyutin, T. I. Malyutina, T. V. Shevtsova, “Azarin limiting sets of functions and asymptotic representation of integrals”, Ufa Math. J., 11:2 (2019), 97–113
Citation in format AMSBIB
\Bibitem{MalMalShe19}
\by K.~G.~Malyutin, T.~I.~Malyutina, T.~V.~Shevtsova
\paper Azarin limiting sets of functions and asymptotic representation of integrals
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 2
\pages 97--113
\mathnet{http://mi.mathnet.ru//eng/ufa474}
\crossref{https://doi.org/10.13108/2019-11-2-97}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511171600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075907520}
Linking options:
  • https://www.mathnet.ru/eng/ufa474
  • https://doi.org/10.13108/2019-11-2-97
  • https://www.mathnet.ru/eng/ufa/v11/i2/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:288
    Russian version PDF:75
    English version PDF:13
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024