Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2019, Volume 11, Issue 2, Pages 82–96
DOI: https://doi.org/10.13108/2019-11-2-82
(Mi ufa473)
 

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables

A. R. Danilina, A. A. Shaburovb

a Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, Sofia Kovalevskaya str. 16, 620990, Ekaterinburg, Russia
b Ural Federal University, Mir str. 19, 620002, Ekaterinburg, Russia
References:
Abstract: We consider an optimal control problem with a convex integral quality functional for a linear system with fast and slow variables in the class of piecewise continuous controls with smooth constraints on the control
$$ \left\{ \begin{aligned} & \dot{x}_{\varepsilon} = A_{11}x_{\varepsilon} + A_{12}y_{\varepsilon}+B_{1}u,\qquad t\in[0,T],\qquad \|u\|\leqslant 1,\\ &\varepsilon\dot{y}_{\varepsilon} = A_{22}y_{\varepsilon} + B_{2}u,\quad x_{\varepsilon}(0)=x^{0},\qquad y_{\varepsilon}(0)=y^{0},\qquad \nabla\varphi_2(0)=0, \\ &J(u)\mathop{:=}\nolimits \varphi_1\left(x_\varepsilon(T)\right) + \varphi_2\left(y_\varepsilon(T)\right) + \int\limits_{0}^{T}\|u(t)\|^2\,dt\rightarrow \min, \end{aligned} \right. $$
where $x\in\mathbb{R}^{n}$, $y\in\mathbb{R}^{m}$, $ u\in\mathbb{R}^{r}$; $A_{ij}$ and $B_{i}$, $i,j=1,2$, are constant matrices of corresponding dimension, and the functions $\varphi_{1}(\cdot), \varphi_{2}(\cdot)$ are continuously differentiable in $\mathbb{R}^{n}, \mathbb{R}^{m},$ strictly convex, and cofinite in the sense of the convex analysis. In the general case, for such problem, the Pontryagin maximum principle is a necessary and sufficient optimality condition and there exist unique vectors $l_\varepsilon$ and $\rho_\varepsilon$ determining an optimal control by the formula
$$ u_{\varepsilon}(T-t):= \frac{C_{1,\varepsilon}^{*}(t)l_\varepsilon + C_{2,\varepsilon}^{*}(t)\rho_\varepsilon} {S\left(\|C_{1,\varepsilon}^{*}(t)l_\varepsilon + C_{2,\varepsilon}^{*}(t)\rho_\varepsilon\|\right)}, $$
where
\begin{align*} & C_{1,\varepsilon}^{*}(t):= B^*_1 e^{A^*_{11}t} + \varepsilon^{-1}B^*_2\mathcal{W^*}_\varepsilon(t),\quad C_{2,\varepsilon}^{*}(t):= \varepsilon^{-1} B^*_2 e^{A^*_{22} t/\varepsilon}, \\ & \mathcal{W}_\varepsilon(t):= e^{A_{11}t}\int\limits_{0}^{t} e^{-A_{11}\tau}A_{12}e^{A_{22} \tau/\varepsilon}\,d\tau, \quad S(\xi)\mathop{:=}\nolimits \left\{ \begin{aligned} & 2,\qquad 0\leqslant \xi\leqslant2, \\ &\xi, \qquad \xi>2. \end{aligned} \right. \end{align*}
The main difference of our problem from the previous papers is that the terminal part of quality functional depends on the slow and fast variables and the controlled system is a more general form. We prove that in the case of a finite number of control change points, a power asymptotic expansion can be constructed for the initial vector of dual state $\lambda_\varepsilon=\left(l_\varepsilon^*\: \rho_\varepsilon^*\right)^*$, which determines the type of the optimal control.
Keywords: optimal control, singularly perturbed problems, asymptotic expansion, small parameter.
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49N05, 93C70
Language: English
Original paper language: Russian
Citation: A. R. Danilin, A. A. Shaburov, “Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables”, Ufa Math. J., 11:2 (2019), 82–96
Citation in format AMSBIB
\Bibitem{DanSha19}
\by A.~R.~Danilin, A.~A.~Shaburov
\paper Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 2
\pages 82--96
\mathnet{http://mi.mathnet.ru//eng/ufa473}
\crossref{https://doi.org/10.13108/2019-11-2-82}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511171600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078655211}
Linking options:
  • https://www.mathnet.ru/eng/ufa473
  • https://doi.org/10.13108/2019-11-2-82
  • https://www.mathnet.ru/eng/ufa/v11/i2/p83
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:381
    Russian version PDF:113
    English version PDF:21
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024