Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2018, Volume 10, Issue 4, Pages 3–11
DOI: https://doi.org/10.13108/2018-10-4-3
(Mi ufa443)
 

This article is cited in 1 scientific paper (total in 1 paper)

Equivalence of norms of analytical functions on exterior of convex domain

N. F. Abuzyarovaa, K. P. Isaevab, R. S. Yulmukhametovab

a Bashkir State University, Zaki Validi str. 32, 450074, Ufa, Russia
b Institute of Mathematics, Federal Research Center, RAS, Chernyshevsky str. 112, 450008, Ufa, Russia
References:
Abstract: We study the spaces of functions holomorphic in the exterior of a bounded domain $D$ and vanishing at infinity. For each $\alpha >-\frac 12$ we introduce the integral weighted normed space $B_2^\alpha (G)$ with the weight $d^\alpha (z)$, where $d(z)$ denotes the distance from a point $z$ to the boundary of $G:=\mathbb{C} \setminus \overline{D}$. For $\alpha = - \frac 12$, the space $B_2^\alpha $ is chosen to be the Smirnov space. We prove that for a convex domain $D$, the norms in these spaces are equivalent to other norms defined in terms of the derivatives. For instance, the norm in the Smirnov space calculated as an integral with respect to the arc length over the boundary is equivalent to some norm defined by an integral with respect to the Lebesgue plane measure. In particular cases the proved results were obtained while studying the problem on describing the classes of Cauchy transforms of the functionals on the Bergman space on $D$. The general results may be applied in the study of Cauchy transforms of functionals on weighted Bergman spaces.
Keywords: analytic functions, Banach spaces, convex sets.
Funding agency Grant number
Russian Science Foundation 18-11-00002
Russian Foundation for Basic Research 18-01-00095_а
The research of first author is supported by the grant of Russian Science Foundation (project no. 18-11-00002). The second and the third authors are supported by RFBR (project no. 18-01-00095-a).
Received: 14.10.2018
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 30H05, 46E15
Language: English
Original paper language: Russian
Citation: N. F. Abuzyarova, K. P. Isaev, R. S. Yulmukhametov, “Equivalence of norms of analytical functions on exterior of convex domain”, Ufa Math. J., 10:4 (2018), 3–11
Citation in format AMSBIB
\Bibitem{AbuIsaYul18}
\by N.~F.~Abuzyarova, K.~P.~Isaev, R.~S.~Yulmukhametov
\paper Equivalence of norms of analytical functions on exterior of convex domain
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 4
\pages 3--11
\mathnet{http://mi.mathnet.ru//eng/ufa443}
\crossref{https://doi.org/10.13108/2018-10-4-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457367000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073672586}
Linking options:
  • https://www.mathnet.ru/eng/ufa443
  • https://doi.org/10.13108/2018-10-4-3
  • https://www.mathnet.ru/eng/ufa/v10/i4/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024