Loading [MathJax]/jax/output/SVG/config.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2018, Volume 10, Issue 3, Pages 35–42
DOI: https://doi.org/10.13108/2018-10-3-35
(Mi ufa436)
 

This article is cited in 3 scientific papers (total in 3 papers)

On holomorphic regularization of strongly nonlinear singularly perturbed problems

V. I. Kachalov

National Research University “MPEI”, Krasnokazarmennaya str. 14, 111250, Moscow, Russia
References:
Abstract: The method of holomorphic regularization, being a logical continuation of the method of S.A. Lomova, allows one to construct solutions to nonlinear singularly perturbed initial problems as series in powers of a small parameter converging in the usual sense. The method is based on a generalization of the Poincare decomposition theorem: in the regular case, solutions depend holomorphically on a small parameter, in the singular case the first integrals inherit this dependence. Having arised in the framework of the regularization method, S.A. Lomov's concept of a pseudo-analytic (pseudo-holomorphic) solution of singularly perturbed problems initiated the formation of the analytic theory of singular perturbations. This theory is designed to equalize the rights of regular and singular theories. In the first case, under sufficiently general assumptions, the series obtained in the solution of problems in powers of the small parameter converge in the usual sense, and in the second case they are basically asymptotic. A vivid example of the holomorphic dependence on a parameter of the solution to a differential equation is given by Poincare's decomposition theorem.
In the present paper, the holomorphic regularization method is applied for constructing pseudo-holomorphic solutions to a singularly perturbed first order equation and to a second order Tikhonov system.
Keywords: holomorphic regularization, commutation relation, pseudo-holomorphic solution, Tikhonov system, passage to the limit.
Received: 29.05.2017
Bibliographic databases:
Document Type: Article
UDC: 517.925
MSC: 34K26
Language: English
Original paper language: Russian
Citation: V. I. Kachalov, “On holomorphic regularization of strongly nonlinear singularly perturbed problems”, Ufa Math. J., 10:3 (2018), 35–42
Citation in format AMSBIB
\Bibitem{Kac18}
\by V.~I.~Kachalov
\paper On holomorphic regularization of strongly nonlinear singularly perturbed problems
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 3
\pages 35--42
\mathnet{http://mi.mathnet.ru/eng/ufa436}
\crossref{https://doi.org/10.13108/2018-10-3-35}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457365400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057058158}
Linking options:
  • https://www.mathnet.ru/eng/ufa436
  • https://doi.org/10.13108/2018-10-3-35
  • https://www.mathnet.ru/eng/ufa/v10/i3/p35
  • This publication is cited in the following 3 articles:
    1. D. A. Maslov, “About One Method for Numerical Solution of the Cauchy Problem for Singularly Perturbed Differential Equations”, Comput. Math. and Math. Phys., 64:5 (2024), 1029  crossref
    2. D. A Maslov, “ON A NUMERICAL METHOD FOR SOLVING THE CAUCHY PROBLEM FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:5 (2024), 804  crossref
    3. M. Besova, V. Kachalov, “Axiomatic approach in the analytic theory of singular perturbations”, Axioms, 9:1 (2020), 9  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:274
    Russian version PDF:78
    English version PDF:28
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025