Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2018, Volume 10, Issue 1, Pages 80–93
DOI: https://doi.org/10.13108/2018-10-1-80
(Mi ufa420)
 

This article is cited in 2 scientific papers (total in 2 papers)

Behavior of singular integral with Hilbert kernel at weak continuity point of density

R. B. Salimov

Kazan State University of Architecture and Engineering, Zelenaya str. 1, 420043, Kazan, Russia
References:
Abstract: We consider the singular integral with the Hilbert kernel
$$ I(\gamma_0)=\int\limits^{2\pi}_{0} \varphi(\gamma)\cot\frac{\gamma-\gamma_0}{2} \,d\gamma, $$
whose density $\varphi(\gamma)$ is a continuous in $[0, 2\pi]$ function, $\gamma_0~\in~[0, 2\pi]$, $\varphi(0)=\varphi(2\pi)$, and the integral is treated in the sense of its principal value. We assume that in the vicinity of a fixed point $\gamma = c$, $c\in(c^{-},c^{+})\subset[0, 2\pi]$, $c^{+}-c^{-}<1$, the density $\varphi(\gamma)$ satisfies the representation $ \varphi(\gamma)=\frac{\Phi(\gamma)}{\left(-\ln \sin^2 \frac{\gamma-c}{2}\right)^{\beta}},\, \gamma \in (c^{-},c^{+}), $ where $\Phi(\gamma)$ is a given continuous in $[c^{-},c]$, $[c,c^{+}]$ function with not necessarily coinciding one-sided limits $\Phi(c-0)$ and $\Phi(c+0)$, $\beta$ is a given number, and $\beta>1$. We suppose that the representations $\Phi(\gamma)-\Phi(c\pm0) = \frac{\chi(\gamma)}{\left( -\ln \sin^2 \frac{\gamma-c}{2}\right)^{\delta}}, $ $ \chi'(\gamma)=\frac{\nu(\gamma)}{\left(-\ln \sin^2 \frac{\gamma-c}{2}\right)\tan\frac{\gamma-c}{2}}, $ hold, where $\delta>0$ is a given number, $\chi(\gamma)$, $\nu(\gamma)$ are given functions continuous in each of the intervals $[c^{-},c]$, $[c,c^{+}]$, $\nu(c\pm0)=0$, $\Phi(c+0)$ is taken as $\gamma > c$, $\Phi(c-0)$ is taken as $\gamma < c$.
We prove that under the above conditions the representation
\begin{align*} I(\gamma_0)&-I(c)= \frac{\Phi(c-0)-\Phi(c+0)}{(\beta-1)\left(-\ln\sin^2\frac{\gamma_0-c}{2}\right)^{\beta-1}} \\ &- \frac{U(c+0)-U(c-0)}{\tilde{\beta}(\tilde{\beta}-1) \left(-\ln\sin^2\frac{\gamma_0-c}{2}\right)^{\tilde{\beta}-1}}+ o\left(\frac{1}{\left(-\ln\sin^2\frac{\gamma_0-c}{2}\right)^{\tilde{\beta}-1}}\right) +O\left(\frac{1}{\left(-\ln\sin^2\frac{\gamma_0-c}{2}\right)^{\beta}}\right), \end{align*}
holds as $\gamma_0\to c$. Here $\tilde{\beta}=\beta+\delta$, $\beta>1$, $\delta>0$, $U(c+0)-U(c-0)=\tilde{\beta}\big(\chi(c+0)-\chi(c-0)\big)$. We also consider the case $\beta=1$. A distinguishing feature of the paper is that while studying the behavior of the considered singular integral in the vicinity of the weak continuity point of its density, we need the Hölder condition no for the density neither for a component of the density. This feature allowed us to extend the range of possible applications of our results.
Keywords: singular integral, Hilbert kernel, Hölder condition, weak continuity.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00636_а
The work is financially supported by RFBR (project no. 12-01-00636-a).
Received: 08.02.2017
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30G12
Language: English
Original paper language: Russian
Citation: R. B. Salimov, “Behavior of singular integral with Hilbert kernel at weak continuity point of density”, Ufa Math. J., 10:1 (2018), 80–93
Citation in format AMSBIB
\Bibitem{Sal18}
\by R.~B.~Salimov
\paper Behavior of singular integral with Hilbert kernel at weak continuity point of density
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 1
\pages 80--93
\mathnet{http://mi.mathnet.ru//eng/ufa420}
\crossref{https://doi.org/10.13108/2018-10-1-80}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432413800007}
\elib{https://elibrary.ru/item.asp?id=32705555}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044313763}
Linking options:
  • https://www.mathnet.ru/eng/ufa420
  • https://doi.org/10.13108/2018-10-1-80
  • https://www.mathnet.ru/eng/ufa/v10/i1/p83
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:327
    Russian version PDF:93
    English version PDF:22
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024