Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2017, Volume 9, Issue 4, Pages 135–144
DOI: https://doi.org/10.13108/2017-9-4-135
(Mi ufa410)
 

This article is cited in 6 scientific papers (total in 6 papers)

Minimum modulus of lacunary power series and $h$-measure of exceptional sets

T. M. Saloa, O. B. Skaskivb

a Institute of Applied Mathematics and Fundamental Sciences, National University "Lvivs’ka Polytehnika", Stepan Bandera str. 12, 79013, Lviv, Ukraine
b Department of Mechanics and Mathematics, Ivan Franko National University of L’viv, Universytetska str. 1, 79000, Lviv, Ukraine
References:
Abstract: We consider some generalizations of Fenton theorem for the entire functions represented by lacunary power series. Let $f(z)=\sum_{k=0}^{+\infty}f_kz^{n_k}$, where $(n_k)$ is a strictly increasing sequence of non-negative integers. We denote by
\begin{align*} &M_f(r)=\max\{|f(z)|\colon |z|=r\}, \\ &m_f(r)=\min\{|f(z)|\colon |z|=r\}, \\ & \mu_f(r)=\max\{|f_k|r^{n_k}\colon k\geq 0\} \end{align*}
the maximum modulus, the minimum modulus and the maximum term of $f,$ respectively. Let $h(r)$ be a positive continuous function increasing to infinity on $[1,+\infty)$ with a non-decreasing derivative. For a measurable set $E\subset [1,+\infty)$ we introduce $h-\mathrm{meas}\,(E)=\int_{E}\frac{dh(r)}{r}.$ In this paper we establish conditions guaranteeing that the relations
$$ M_f(r)=(1+o(1)) m_f(r),\quad M_f(r)=(1+o(1))\mu_f(r) $$
are true as $r\to+\infty$ outside some exceptional set $E$ such that $h-\mathrm{meas}\,(E)<+\infty$. For some subclasses we obtain necessary and sufficient conditions. We also provide similar results for entire Dirichlet series.
Keywords: lacunary power series, minimum modulus, maximum modulus, maximal term, entire Dirichlet series, exceptional set, $h$-measure.
Received: 22.07.2016
Bibliographic databases:
Document Type: Article
UDC: 517.576
MSC: 30B50
Language: English
Original paper language: English
Citation: T. M. Salo, O. B. Skaskiv, “Minimum modulus of lacunary power series and $h$-measure of exceptional sets”, Ufa Math. J., 9:4 (2017), 135–144
Citation in format AMSBIB
\Bibitem{SalSka17}
\by T.~M.~Salo, O.~B.~Skaskiv
\paper Minimum modulus of lacunary power series and $h$-measure of exceptional sets
\jour Ufa Math. J.
\yr 2017
\vol 9
\issue 4
\pages 135--144
\mathnet{http://mi.mathnet.ru//eng/ufa410}
\crossref{https://doi.org/10.13108/2017-9-4-135}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000424521900014}
\elib{https://elibrary.ru/item.asp?id=30562600}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85038097075}
Linking options:
  • https://www.mathnet.ru/eng/ufa410
  • https://doi.org/10.13108/2017-9-4-135
  • https://www.mathnet.ru/eng/ufa/v9/i4/p137
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024