Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2017, Volume 9, Issue 4, Pages 127–134
DOI: https://doi.org/10.13108/2017-9-4-127
(Mi ufa403)
 

This article is cited in 1 scientific paper (total in 1 paper)

Quasi-elliptic functions

A. Ya. Khrystiyanyn, Dz. V. Lukivska

Ivan Franko National University of Lviv, Universytetska str., 1, 79000, Lviv, Ukraine
References:
Abstract: We study certain generalizations of elliptic functions, namely quasi-elliptic functions.
Let $p = e^{i\alpha},$ $q = e^{i\beta},$ $\alpha,\, \beta \in \mathbb{R}.$ A meromorphic in $\mathbb{C}$ function $g$ is called quasi-elliptic if there exist $\omega_1, \omega_2 \in \mathbb{C}^{*},$ $\mathrm{Im} \frac{\omega_2}{\omega_1} > 0,$ such that $g(u+\omega_1)=pg(u)$, $g(u+\omega_2)=qg(u)$ for each $u\in\mathbb{C}$. In the case $\alpha = \beta = 0 \mod 2\pi$ this is a classical theory of elliptic functions. A class of quasi-elliptic functions is denoted by $\mathcal{QE}.$ We show that the class $\mathcal{QE}$ is nontrivial. For this class of functions we construct analogues $\wp_{\alpha \beta}$, $\zeta_{\alpha \beta}$ of $\wp$ and $\zeta$ Weierstrass functions. Moreover, these analogues are in fact the generalizations of the classical $\wp$ and $\zeta$ functions in such a way that the latter can be found among the former by letting $\alpha=0$ and $\beta=0$. We also study an analogue of the Weierstrass $\sigma$ function and establish connections between this function and $\wp_{\alpha \beta}$ as well as $\zeta_{\alpha \beta}$.
Let $q, p \in\mathbb{C}^*,$ $|q|<1.$ A meromorphic in $\mathbb{C^{*}}$ function $f$ is said to be $p$-loxodromic of multiplicator $q$ if for each $z \in \mathbb{C}^{*}$ $f(qz) = pf(z).$ We obtain telations between quasi-elliptic and $p$-loxodromic functions.
Keywords: quasi-elliptic function, the Weierstrass $\wp$-function, the Weierstrass $\zeta$-function, the Weierstrass $\sigma$-function, $p$-loxodromic function.
Received: 27.09.2016
Russian version:
Ufimskii Matematicheskii Zhurnal, 2017, Volume 9, Issue 4, Pages 129–136
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30D30
Language: English
Original paper language: English
Citation: A. Ya. Khrystiyanyn, Dz. V. Lukivska, “Quasi-elliptic functions”, Ufimsk. Mat. Zh., 9:4 (2017), 129–136; Ufa Math. J., 9:4 (2017), 127–134
Citation in format AMSBIB
\Bibitem{KhrLuk17}
\by A.~Ya.~Khrystiyanyn, Dz.~V.~Lukivska
\paper Quasi-elliptic functions
\jour Ufimsk. Mat. Zh.
\yr 2017
\vol 9
\issue 4
\pages 129--136
\mathnet{http://mi.mathnet.ru/ufa403}
\elib{https://elibrary.ru/item.asp?id=30562599}
\transl
\jour Ufa Math. J.
\yr 2017
\vol 9
\issue 4
\pages 127--134
\crossref{https://doi.org/10.13108/2017-9-4-127}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000424521900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85038125775}
Linking options:
  • https://www.mathnet.ru/eng/ufa403
  • https://doi.org/10.13108/2017-9-4-127
  • https://www.mathnet.ru/eng/ufa/v9/i4/p129
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:198
    Russian version PDF:115
    English version PDF:49
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024