Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2017, Volume 9, Issue 1, Pages 54–61
DOI: https://doi.org/10.13108/2017-9-1-54
(Mi ufa364)
 

This article is cited in 5 scientific papers (total in 5 papers)

On coercive properties and separability of biharmonic operator with matrix potential

O. Kh. Karimov

Institute of Mathematics AS RT, Ainy st., 299/4, 734063, Dushanbe, Republic of Tadjikistan
References:
Abstract: In the work we consider the coercive properties of a nonlinear biharmonic operator with a matrix operator in the space $L_2(\mathbb R^n)^l$ and we prove its separability in this space. The considered nonlinear operators are not small perturbation of linear operators. The case of the linear biharmonic operator is considered separately.
Keywords: biharmonic differential operator, matrix potential, coercive inequalities, nonlinearity, separability.
Received: 10.02.2016
Bibliographic databases:
Document Type: Article
UDC: 517.948
MSC: 35Q40, 35J10
Language: English
Original paper language: Russian
Citation: O. Kh. Karimov, “On coercive properties and separability of biharmonic operator with matrix potential”, Ufa Math. J., 9:1 (2017), 54–61
Citation in format AMSBIB
\Bibitem{Kar17}
\by O.~Kh.~Karimov
\paper On coercive properties and separability of biharmonic operator with matrix potential
\jour Ufa Math. J.
\yr 2017
\vol 9
\issue 1
\pages 54--61
\mathnet{http://mi.mathnet.ru//eng/ufa364}
\crossref{https://doi.org/10.13108/2017-9-1-54}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411736500005}
\elib{https://elibrary.ru/item.asp?id=29009895}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018789021}
Linking options:
  • https://www.mathnet.ru/eng/ufa364
  • https://doi.org/10.13108/2017-9-1-54
  • https://www.mathnet.ru/eng/ufa/v9/i1/p55
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025