Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2016, Volume 8, Issue 4, Pages 123–130
DOI: https://doi.org/10.13108/2016-8-4-123
(Mi ufa358)
 

This article is cited in 1 scientific paper (total in 1 paper)

Perturbation of a surjective convolution operator

I. Kh. Musin

Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
References:
Abstract: Let $\mu\in\mathcal E'(\mathbb R^n)$ be a compactly supported distribution such that its support is a convex set with a non-empty interior. Let $X_2$ be a convex domain in $\mathbb R^n$, $X_1=X_2+\mathrm{supp}\,\mu $. Let the convolution operator $A\colon\mathcal E(X_1)\to\mathcal E(X_2)$ acting by the rule $(Af)(x)=(\mu*f)(x)$ is surjective. We obtain a sufficient condition for a linear continuous operator $B\colon\mathcal E(X_1)\to\mathcal E(X_2)$ ensuring the surjectivity of the operator $A+B$.
Keywords: convolution operator, distribution, Fourier–Laplace transform, entire functions.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-01661
Russian Academy of Sciences - Federal Agency for Scientific Organizations
The work is supported by the Russian Foundation for Basic Researches (grant no. 15-01-01661) and the Program of the Presidium of RAS (project “Complex analysis and functional equations”.)
Received: 25.06.2016
Russian version:
Ufimskii Matematicheskii Zhurnal, 2016, Volume 8, Issue 4, Pages 127–134
Bibliographic databases:
Document Type: Article
UDC: 517.55+517.98+517.982.3
MSC: 42B10, 44A35, 46E10
Language: English
Original paper language: Russian
Citation: I. Kh. Musin, “Perturbation of a surjective convolution operator”, Ufimsk. Mat. Zh., 8:4 (2016), 127–134; Ufa Math. J., 8:4 (2016), 123–130
Citation in format AMSBIB
\Bibitem{Mus16}
\by I.~Kh.~Musin
\paper Perturbation of a~surjective convolution operator
\jour Ufimsk. Mat. Zh.
\yr 2016
\vol 8
\issue 4
\pages 127--134
\mathnet{http://mi.mathnet.ru/ufa358}
\elib{https://elibrary.ru/item.asp?id=27512570}
\transl
\jour Ufa Math. J.
\yr 2016
\vol 8
\issue 4
\pages 123--130
\crossref{https://doi.org/10.13108/2016-8-4-123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411735400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013438935}
Linking options:
  • https://www.mathnet.ru/eng/ufa358
  • https://doi.org/10.13108/2016-8-4-123
  • https://www.mathnet.ru/eng/ufa/v8/i4/p127
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:209
    Russian version PDF:95
    English version PDF:8
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024