Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2016, Volume 8, Issue 4, Pages 24–41
DOI: https://doi.org/10.13108/2016-8-4-24
(Mi ufa349)
 

This article is cited in 4 scientific papers (total in 4 papers)

On solutions of Cauchy problem for equation $u_{xx}+Q(x)u-P(u)=0$ without singularities in a given interval

G. L. Alfimov, P. P. Kizin

National Research University of Electronic Technology, Moscow
References:
Abstract: The paper is devoted to Cauchy problem for equation $u_{xx}+Q(x)u-P(u)=0$, where $Q(x)$ is a $\pi$-periodic function. It is known that for a wide class of the nonlinearities $P(u)$ the “most part” of solutions of Cauchy problem for this equation are singular, i.e., they tend to infinity at some finite point of real axis. Earlier in the case $P(u)=u^3$ this fact allowed us to propose an approach for a complete description of solutions to this equations bounded on the entire line. One of the ingredients in this approach is the studying of the set $\mathcal U^+_L$ introduced as the set of the points $(u_*,u_*')$ in the initial data plane, for which the solutions to the Cauchy problem $u(0)=u_*$, $u_x(0)=u_*'$ is not singular in the segment $[0;L]$. In the present work we prove a series of statements on the set $\mathcal U^+_L$ and on their base, we classify all possible type of the geometry of such sets. The presented results of the numerical calculations are in a good agreement with theoretical statements.
Keywords: ODE with periodic coefficients, singular solutions, nonlinear Schrödinger equation.
Received: 17.03.2016
Russian version:
Ufimskii Matematicheskii Zhurnal, 2016, Volume 8, Issue 4, Pages 24–42
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: G. L. Alfimov, P. P. Kizin, “On solutions of Cauchy problem for equation $u_{xx}+Q(x)u-P(u)=0$ without singularities in a given interval”, Ufimsk. Mat. Zh., 8:4 (2016), 24–42; Ufa Math. J., 8:4 (2016), 24–41
Citation in format AMSBIB
\Bibitem{AlfKiz16}
\by G.~L.~Alfimov, P.~P.~Kizin
\paper On solutions of Cauchy problem for equation $u_{xx}+Q(x)u-P(u)=0$ without singularities in a~given interval
\jour Ufimsk. Mat. Zh.
\yr 2016
\vol 8
\issue 4
\pages 24--42
\mathnet{http://mi.mathnet.ru/ufa349}
\elib{https://elibrary.ru/item.asp?id=27512563}
\transl
\jour Ufa Math. J.
\yr 2016
\vol 8
\issue 4
\pages 24--41
\crossref{https://doi.org/10.13108/2016-8-4-24}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411735400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013426722}
Linking options:
  • https://www.mathnet.ru/eng/ufa349
  • https://doi.org/10.13108/2016-8-4-24
  • https://www.mathnet.ru/eng/ufa/v8/i4/p24
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:268
    Russian version PDF:120
    English version PDF:6
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024