Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2015, Volume 7, Issue 3, Pages 119–131
DOI: https://doi.org/10.13108/2015-7-3-119
(Mi ufa289)
 

This article is cited in 5 scientific papers (total in 5 papers)

On an inverse spectral problem for Sturm–Liouville operator with discontinuous coefficient

Kh. R. Mamedova, D. Karahanb

a Science and Letter Faculty, Mathematics Department, Mersin University, 333343, Mersin, Turkey
b Science and Letters Faculty, Mathematics Department, Harran University, Sanliurfa, Turkey
References:
Abstract: In this paper, the direct and inverse problems for Sturm–Liouville operator with discontinuous coefficient are studied. The spectral properties of the Sturm–Liouville problem with discontinuous coefficient such as the orthogonality of its eigenfunctions and simplicity of its eigenvalues are investigated. Asymptotic formulas for eigenvalues and eigenfunctions of this problem are examined. The resolvent operator is constructed and the expansion formula with respect to eigenfunctions is obtained. It is shown that eigenfunctions of this problem are in the form of a complete system. The Weyl solution and Weyl function are defined. Uniqueness theorems for the solution of the inverse problem according to Weyl function and spectral date are proved.
Keywords: Sturm–Liouville operator, expansion formula, inverse problem, Weyl function.
Received: 22.04.2015
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 34A55, 34B24, 47E05
Language: English
Original paper language: English
Citation: Kh. R. Mamedov, D. Karahan, “On an inverse spectral problem for Sturm–Liouville operator with discontinuous coefficient”, Ufa Math. J., 7:3 (2015), 119–131
Citation in format AMSBIB
\Bibitem{MamKar15}
\by Kh.~R.~Mamedov, D.~Karahan
\paper On an inverse spectral problem for Sturm--Liouville operator with discontinuous coefficient
\jour Ufa Math. J.
\yr 2015
\vol 7
\issue 3
\pages 119--131
\mathnet{http://mi.mathnet.ru//eng/ufa289}
\crossref{https://doi.org/10.13108/2015-7-3-119}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416602400013}
\elib{https://elibrary.ru/item.asp?id=24716961}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959054733}
Linking options:
  • https://www.mathnet.ru/eng/ufa289
  • https://doi.org/10.13108/2015-7-3-119
  • https://www.mathnet.ru/eng/ufa/v7/i3/p125
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:304
    Russian version PDF:131
    English version PDF:31
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024