Loading [MathJax]/jax/output/CommonHTML/jax.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2015, Volume 7, Issue 2, Pages 3–16
DOI: https://doi.org/10.13108/2015-7-2-3
(Mi ufa275)
 

This article is cited in 8 scientific papers (total in 8 papers)

On regular and singular solutions for equation uxx+Q(x)u+P(x)u3=0

G. L. Alfimov, M. E. Lebedev

National Research University of Electronic Technology, 4806 av., 5, 124498, Moscow, Zelenograd, Russia
References:
Abstract: The paper is devoted to the equation uxx+Q(x)u+P(x)u3=0. The equations of such kind have been used to describe stationary modes in the models of Bose–Einstein condensate. It is known that under some conditions for P(x) and Q(x), the “most part” of solutions for such equations are singular, i.e. tend to infinity at some point of the real axis. In some situations this fact allows us to apply the methods of symbolic dynamics to describe non-singular solutions of this equation and to construct comprehensive classification of these solutions. In the paper we present (i) necessary conditions for existence of singular solutions as well as conditions for their absence; (ii) the results of numerical study of the case when Q(x) is a constant and P(x) is an alternate periodic function. Basing on these results, we formulate a conjecture that all the non-singular solutions of the equation can be coded by bi-infinite sequences of symbols of a countable alphabet.
Keywords: ODE with periodic coefficients, singular solutions, nonlinear Schrödinger equation, stationary modes.
Received: 22.03.2015
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: G. L. Alfimov, M. E. Lebedev, “On regular and singular solutions for equation uxx+Q(x)u+P(x)u3=0”, Ufa Math. J., 7:2 (2015), 3–16
Citation in format AMSBIB
\Bibitem{AlfLeb15}
\by G.~L.~Alfimov, M.~E.~Lebedev
\paper On regular and singular solutions for equation $u_{xx}+Q(x)u+P(x)u^3=0$
\jour Ufa Math. J.
\yr 2015
\vol 7
\issue 2
\pages 3--16
\mathnet{http://mi.mathnet.ru/eng/ufa275}
\crossref{https://doi.org/10.13108/2015-7-2-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416602300001}
\elib{https://elibrary.ru/item.asp?id=24188341}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937915834}
Linking options:
  • https://www.mathnet.ru/eng/ufa275
  • https://doi.org/10.13108/2015-7-2-3
  • https://www.mathnet.ru/eng/ufa/v7/i2/p3
  • This publication is cited in the following 8 articles:
    1. Mikhail E. Lebedev, Georgy L. Alfimov, “Numerical Evidence of Hyperbolic Dynamics and Coding of Solutions for Duffing-Type Equations with Periodic Coefficients”, Regul. Chaotic Dyn., 29:3 (2024), 451–473  mathnet  crossref
    2. M. V. Gasanov, A. G. Gulkanov, “A Study of a Mathematical Model with a Movable Singular Point in a Fourth-Order Nonlinear Differential Equation”, Rus. J. Nonlin. Dyn., 19:4 (2023), 575–584  mathnet  crossref
    3. G. L. Alfimov, M. E. Lebedev, “Complete Description of Bounded Solutions for a Duffing-Type Equation with a Periodic Piecewise Constant Coefficient”, Rus. J. Nonlin. Dyn., 19:4 (2023), 473–506  mathnet  crossref
    4. G.L. Alfimov, A.P. Fedotov, N.A. Kutsenko, D.A. Zezyulin, “Stationary modes for vector nonlinear Schrödinger-type equations: A numerical procedure for complete search and its mathematical background”, Physica D: Nonlinear Phenomena, 454 (2023), 133858  crossref
    5. G. L. Alfimov, I. V. Barashenkov, A. P. Fedotov, V. V. Smirnov, D. A. Zezyulin, “Global search for localised modes in scalar and vector nonlinear Schrodinger-type equations”, Physica D, 397 (2019), 39–53  crossref  mathscinet  isi  scopus
    6. G. L. Alfimov, P. P. Kizin, D. A. Zezyulin, “Gap Solitons For the Repulsive Gross-Pitaevskii Equation With Periodic Potential: Coding and Method For Computation”, Discrete Contin. Dyn. Syst.-Ser. B, 22:4 (2017), 1207–1229  crossref  mathscinet  zmath  isi  scopus
    7. G. L. Alfimov, P. P. Kizin, “On solutions of Cauchy problem for equation uxx+Q(x)uP(u)=0 without singularities in a given interval”, Ufa Math. J., 8:4 (2016), 24–41  mathnet  crossref  isi  elib
    8. M. E. Lebedev, G. L. Alfimov, B. A. Malomed, “Stable Dipole Solitons and Soliton Complexes in the Nonlinear Schrodinger Equation With Periodically Modulated Nonlinearity”, Chaos, 26:7 (2016), 073110  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:515
    Russian version PDF:279
    English version PDF:33
    References:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025