Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2014, Volume 6, Issue 3, Pages 35–68
DOI: https://doi.org/10.13108/2014-6-3-35
(Mi ufa252)
 

This article is cited in 1 scientific paper (total in 1 paper)

Singular integral operators on a manifold with a distinguished submanifold

Yu. A. Kordyukova, V. A. Pavlenkob

a Institute of Mathematics, Russian Academy of Sciences, 112, Chernyshevsky str., 450008 Ufa, Russia
b Bashkir State Agrarian University, 34 50-letiya Oktyabrya Str., 450001 Ufa, Russia
References:
Abstract: Let $X$ be a compact manifold without boundary and $X^0$ its smooth submanifold of codimension one. In this work we introduce classes of integral operators on $X$ with kernels $K_A(x,y)$, being smooth functions for $x\notin X^0$ and $y\notin X^0$, and admitting an asymptotic expansion of certain type, if $x$ or $y$ approaches $X^0$. For operators of these classes we prove theorems about action in spaces of conormal functions and composition. We show that the trace functional can be extended to a regularized trace functional $\operatorname{r-Tr}$ defined on some algebra $\mathcal K(X,X^0)$ of singular integral operators described above. We prove a formula for the regularized trace of the commutator of operators from this class in terms of associated operators on $X^0$. The proofs are based on theorems about pull-back and push-forward of conormal functions under maps of manifolds with distinguished codimension one submanifolds.
Keywords: manifolds, singular integral operators, conormal functions, regularized trace, pull-back, push-forward.
Received: 13.03.2014
Russian version:
Ufimskii Matematicheskii Zhurnal, 2014, Volume 6, Issue 3, Pages 35–71
Bibliographic databases:
Document Type: Article
UDC: 515.168+517.983
MSC: 47G10, 58J40,47C05
Language: English
Original paper language: Russian
Citation: Yu. A. Kordyukov, V. A. Pavlenko, “Singular integral operators on a manifold with a distinguished submanifold”, Ufimsk. Mat. Zh., 6:3 (2014), 35–71; Ufa Math. J., 6:3 (2014), 35–68
Citation in format AMSBIB
\Bibitem{KorPav14}
\by Yu.~A.~Kordyukov, V.~A.~Pavlenko
\paper Singular integral operators on a~manifold with a~distinguished submanifold
\jour Ufimsk. Mat. Zh.
\yr 2014
\vol 6
\issue 3
\pages 35--71
\mathnet{http://mi.mathnet.ru/ufa252}
\elib{https://elibrary.ru/item.asp?id=22370777}
\transl
\jour Ufa Math. J.
\yr 2014
\vol 6
\issue 3
\pages 35--68
\crossref{https://doi.org/10.13108/2014-6-3-35}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928194358}
Linking options:
  • https://www.mathnet.ru/eng/ufa252
  • https://doi.org/10.13108/2014-6-3-35
  • https://www.mathnet.ru/eng/ufa/v6/i3/p35
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:262
    Russian version PDF:89
    English version PDF:10
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024