Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2014, Volume 6, Issue 2, Pages 3–24
DOI: https://doi.org/10.13108/2014-6-2-3
(Mi ufa239)
 

This article is cited in 5 scientific papers (total in 5 papers)

Estimates of decay rate for solution to parabolic equation with non-power nonlinearities

E. R. Andriyanova

Ufa State Aviation Technical University, Ufa, Russia
References:
Abstract: We study the Dirichlet mixed problem for a class parabolic equation with double non-power nonlinearities in cylindrical domain $D=(t>0)\times\Omega$. By the Galerkin approximations method suggested by Mukminov F. Kh. for a parabolic equation with double nonlinearities we prove the existence of strong solutions in Sobolev–Orlicz space. The maximum principle as well as upper and lower estimates characterizing powerlike decay of solution as $t\to\infty$ in bounded and unbounded domains $\Omega\subset R_n$ are established.
Keywords: parabolic equation, $N$-functions, existence of solution, estimate of decay rate of solution, Sobolev–Orlicz spaces.
Received: 14.11.2013
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: English
Original paper language: Russian
Citation: E. R. Andriyanova, “Estimates of decay rate for solution to parabolic equation with non-power nonlinearities”, Ufa Math. J., 6:2 (2014), 3–24
Citation in format AMSBIB
\Bibitem{And14}
\by E.~R.~Andriyanova
\paper Estimates of decay rate for solution to parabolic equation with non-power nonlinearities
\jour Ufa Math. J.
\yr 2014
\vol 6
\issue 2
\pages 3--24
\mathnet{http://mi.mathnet.ru//eng/ufa239}
\crossref{https://doi.org/10.13108/2014-6-2-3}
\elib{https://elibrary.ru/item.asp?id=21596971}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928186140}
Linking options:
  • https://www.mathnet.ru/eng/ufa239
  • https://doi.org/10.13108/2014-6-2-3
  • https://www.mathnet.ru/eng/ufa/v6/i2/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025