Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2013, Volume 5, Issue 3, Pages 40–52
DOI: https://doi.org/10.13108/2013-5-3-40
(Mi ufa208)
 

This article is cited in 2 scientific papers (total in 2 papers)

On some special solutions of Eisenhart equation

Z. Kh. Zakirova

Kazan State Power Engineering University, Krasnosel'skya str., 51, 420066, Kazan, Russia
References:
Abstract: In this note we study a $6$-dimensional pseudo-Riemannian space $V^6(g_{ij})$ with the signature $[++----]$, which admits projective motions, i.e., continuous transformation groups preserving geodesics. A general method of determining pseudo-Riemannian spaces admitting some nonhomothetic projective group $G_r$ was developed by A. V. Aminova. A. V. Aminova classified all Lorentzian manifolds of dimension $\geq3$ admitting nonhomothetic projective or affine infinitesimal transformations. The problem of classification is not solved for pseudo-Riemannian spaces with arbitrary signature.
In order to find a pseudo-Riemannian space admitting a nonhomothetic infinitesimal projective transformation, one has to integrate the Eisenhart equation
$$ h_{ij,k}=2g_{ij}\varphi_{,k}+g_{ik}\varphi_{,j}+g_{jk}\varphi_{,i}. $$

Pseudo-Riemannian manifolds for which there exist nontrivial solutions $h_{ij}\ne cg_{ij}$ to the Eisenhart equation are called $h$-spaces. It is known that the problem of describing such spaces depends on the type of an $h$-space, i.e., on the type of the bilinear form $L_Xg_{ij}$ determined by the characteristic of the $\lambda$-matrix $(h_{ij}-\lambda g_{ij})$. The number of possible types depends on the dimension and the signature of an $h$-space.
In this work we find the metrics and determine quadratic first integrals of the corresponding geodesic lines equations for $6$-dimensional $h$-spaces of the type $[(21\ldots1)(21\ldots1)\ldots(1\ldots1)]$.
Keywords: differential geometry, pseudo-Riemannian manifolds, systems of partial differential equations.
Received: 27.12.2011
Bibliographic databases:
Document Type: Article
UDC: 514.764+517.95
MSC: 53C50, 53B30
Language: English
Original paper language: Russian
Citation: Z. Kh. Zakirova, “On some special solutions of Eisenhart equation”, Ufa Math. J., 5:3 (2013), 40–52
Citation in format AMSBIB
\Bibitem{Zak13}
\by Z.~Kh.~Zakirova
\paper On some special solutions of Eisenhart equation
\jour Ufa Math. J.
\yr 2013
\vol 5
\issue 3
\pages 40--52
\mathnet{http://mi.mathnet.ru//eng/ufa208}
\crossref{https://doi.org/10.13108/2013-5-3-40}
\elib{https://elibrary.ru/item.asp?id=20930799}
Linking options:
  • https://www.mathnet.ru/eng/ufa208
  • https://doi.org/10.13108/2013-5-3-40
  • https://www.mathnet.ru/eng/ufa/v5/i3/p41
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:367
    Russian version PDF:135
    English version PDF:27
    References:78
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024