Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2013, Volume 5, Issue 1, Pages 36–55
DOI: https://doi.org/10.13108/2013-5-1-36
(Mi ufa185)
 

This article is cited in 1 scientific paper (total in 1 paper)

On analytic properties of Weyl function of Sturm–Liouville operator with a decaying complex potential

Kh. K. Ishkin

Bashkir State University, Faculty of Mathematics and Information Technologies
References:
Abstract: We study the spectral properties of the operator $L_\beta$ associated with the quadratic form $\mathcal{L}_\beta=\int\limits_{0}^{\infty}(|y'|^2-\beta x^{-\gamma}|y|^2)dx$ with the domain ${Q_0=\{y\in W_2^1(0,+\infty): y(0)=0\}}$, $0<\gamma<2$, $\beta\in \mathbf{C}$, as well as of the perturbed operator $M_\beta=L_\beta+W$. Under the assumption $(1+x^{\gamma/2})W\in L^1(0,+\infty)$ we prove the existence of finite quantum defect of the discrete spectrum that was established earlier by L. A. Sakhnovich as $\beta>0$, $\gamma=1$ and for real $W$ satisfying a more strict decaying condition at infinity. The main result of the paper is the proof of necessity (with some reservations) of the sufficient conditions for $W(x)$ obtained earlier by Kh. Kh. Murtazin under which the Weyl function of the operator $M_\beta$ possesses an analytic continuation on some angle from non-physical sheet.
Keywords: spectral instability, localization of spectrum, quantum defect, Weyl function, Darboux transformation.
Received: 15.01.2013
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: Kh. K. Ishkin, “On analytic properties of Weyl function of Sturm–Liouville operator with a decaying complex potential”, Ufa Math. J., 5:1 (2013), 36–55
Citation in format AMSBIB
\Bibitem{Ish13}
\by Kh.~K.~Ishkin
\paper On analytic properties of Weyl function of Sturm--Liouville operator with a decaying complex potential
\jour Ufa Math. J.
\yr 2013
\vol 5
\issue 1
\pages 36--55
\mathnet{http://mi.mathnet.ru//eng/ufa185}
\crossref{https://doi.org/10.13108/2013-5-1-36}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3429949}
\elib{https://elibrary.ru/item.asp?id=18929625}
Linking options:
  • https://www.mathnet.ru/eng/ufa185
  • https://doi.org/10.13108/2013-5-1-36
  • https://www.mathnet.ru/eng/ufa/v5/i1/p36
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024