Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2012, Volume 4, Issue 2, Pages 127–135 (Mi ufa153)  

This article is cited in 12 scientific papers (total in 12 papers)

The “quantum” linearization of the Painlevé equations as a component of theier $L,A$ pairs

B. I. Suleimanov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia
References:
Abstract: The procedure of the “quantum” linearization of the Hamiltonian ordinary differential equations with one degree of freedom is investigated. It is offered to be used for the classification of integrable equations of the Painleve type. For the Hamiltonian $H=(p^2+q^2)/2$ and all natural numbers $n$ the new solutions $\Psi(\hbar,t,x,n)$ of the non-stationary Shrödinger equation are constructed. The solutions tend to zero at $x\to\pm\infty$. On curves $x=q_n(\hbar,t)$, defined by the old Bohr–Zommerfeld rule, the solutions satisfy the relation $i\hbar\Psi'_x\equiv p_n(\hbar,t)\Psi$. In this relation $p_n(\hbar,t)=(q_n(\hbar,t))'_t $ is the classical momentum corresponding to the harmonic $q_n(\hbar,t)$.
Keywords: quantization, linearization, non-stationary Schrödinger equation, Painlevé equations, isomonodromi deformations.
Received: 01.03.2012
Document Type: Article
UDC: 517.9
Language: Russian
Citation: B. I. Suleimanov, “The “quantum” linearization of the Painlevé equations as a component of theier $L,A$ pairs”, Ufa Math. J., 4:2 (2012)
Citation in format AMSBIB
\Bibitem{Sul12}
\by B.~I.~Suleimanov
\paper The ``quantum'' linearization of the Painlev\'e equations as a~component of theier $L,A$ pairs
\jour Ufa Math. J.
\yr 2012
\vol 4
\issue 2
\mathnet{http://mi.mathnet.ru//eng/ufa153}
Linking options:
  • https://www.mathnet.ru/eng/ufa153
  • https://www.mathnet.ru/eng/ufa/v4/i2/p127
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025