Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2012, Volume 4, Issue 2, Pages 28–64 (Mi ufa146)  

This article is cited in 4 scientific papers (total in 4 papers)

Perturbation of an elliptic operator by a narrow potential in an $n$-dimensional domain

A. R. Bikmetov, R. R. Gadyl'shin

Bashkir State Pedagogical University, Ufa, Russia
Full-text PDF (652 kB) Citations (4)
References:
Abstract: We study a discrete spectrum of an elliptic operator of the second order in an $n$-dimensional domain, $n\geq2$, perturbed by a potential depending on two parameters, one of the parameters describes the length of the support of the potential and the inverse of the other corresponds to the magnitude of the potential. We give the relation between these parameters, under which the generalized convergence of the perturbed operator to the unperturbed one holds. Under this relation we construct the asymptotics w.r.t. small parameters of the eigenvalues of the perturbed operators.
Keywords: elliptic operator, perturbation, matching of asymptotic expansions.
Received: 10.05.2012
Bibliographic databases:
Document Type: Article
UDC: 517.928+517.984
Language: Russian
Citation: A. R. Bikmetov, R. R. Gadyl'shin, “Perturbation of an elliptic operator by a narrow potential in an $n$-dimensional domain”, Ufa Math. J., 4:2 (2012)
Citation in format AMSBIB
\Bibitem{BikGad12}
\by A.~R.~Bikmetov, R.~R.~Gadyl'shin
\paper Perturbation of an elliptic operator by a~narrow potential in an $n$-dimensional domain
\jour Ufa Math. J.
\yr 2012
\vol 4
\issue 2
\mathnet{http://mi.mathnet.ru//eng/ufa146}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3432642}
Linking options:
  • https://www.mathnet.ru/eng/ufa146
  • https://www.mathnet.ru/eng/ufa/v4/i2/p28
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025