Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2012, Volume 4, Issue 1, Pages 6–16 (Mi ufa127)  

This article is cited in 2 scientific papers (total in 2 papers)

Equivalence group analysis and nonlinear self-adjointness of the generalized Kompaneets equation

E. D. Avdonina, N. H. Ibragimov

Ufa State Aviation Technical University, Ufa, Russia
Full-text PDF (378 kB) Citations (2)
References:
Abstract: Equivalence group analysis is applied to the Kompaneets equation. We compute the equivalence Lie algebra for the corresponding generalized Kompaneets equation. We also show that the generalized Kompaneets equation is nonlinearly self-adjoint.
The principle of an a priori use of symmetries gives a possibility to use the equivalence algebra in order to approximate the Kompaneets equation by an equation having a wider class of symmetries. Using an additional symmetry of the approximating equation and the nonlinear self-adjointness, one can construct new group invariant solutions and conservation laws.
Keywords: Kompaneets equation, generalized kompaneets equation, equivalence algebra, nonlinear self-adjointness, invariant solution.
Received: 22.11.2011
Document Type: Article
UDC: 517.958+537.84
Language: Russian
Citation: E. D. Avdonina, N. H. Ibragimov, “Equivalence group analysis and nonlinear self-adjointness of the generalized Kompaneets equation”, Ufa Math. J., 4:1 (2012)
Citation in format AMSBIB
\Bibitem{AvdIbr12}
\by E.~D.~Avdonina, N.~H.~Ibragimov
\paper Equivalence group analysis and nonlinear self-adjointness of the generalized Kompaneets equation
\jour Ufa Math. J.
\yr 2012
\vol 4
\issue 1
\mathnet{http://mi.mathnet.ru//eng/ufa127}
Linking options:
  • https://www.mathnet.ru/eng/ufa127
  • https://www.mathnet.ru/eng/ufa/v4/i1/p6
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:558
    Full-text PDF :183
    References:55
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024