Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2011, Volume 3, Issue 4, Pages 122–132 (Mi ufa123)  

An equivalent integral norm in a dual space

V. V. Napalkov (jr.)

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia
References:
Abstract: In the present paper, the problem of describing a dual space in terms of the Hilbert transform is considered. We establish the necessary and sufficient conditions for the space $\widetilde B_2(G,\mu)$ to possess an integral norm equivalent to the initial one. We find the form of this norm. Using the general result of this work, we specify the recent result of the author and R. S. Yulmukhametov. The method suggested in the paper is based on the theory of orthosimilar systems. This method can be used to solve the problem of describing a dual space in terms of the Fourier–Lapalace transform and in terms of others complete system of functions.
Keywords: Hilbert transform, reproducing kernel, orthosimilar system, wavelet transform, integral frames.
Received: 24.07.2011
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. V. Napalkov (jr.), “An equivalent integral norm in a dual space”, Ufa Math. J., 3:4 (2011)
Citation in format AMSBIB
\Bibitem{Nap11}
\by V.~V.~Napalkov (jr.)
\paper An equivalent integral norm in a~dual space
\jour Ufa Math. J.
\yr 2011
\vol 3
\issue 4
\mathnet{http://mi.mathnet.ru//eng/ufa123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3429021}
\zmath{https://zbmath.org/?q=an:1249.30142}
Linking options:
  • https://www.mathnet.ru/eng/ufa123
  • https://www.mathnet.ru/eng/ufa/v3/i4/p122
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:566
    Full-text PDF :169
    References:72
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024