Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2009, Volume 1, Issue 2, Pages 75–100 (Mi ufa12)  

This article is cited in 1 scientific paper (total in 1 paper)

On a class of infinitely differentiable functions on unbounded convex set in $\mathbb R^n$ admitting holomorphic continuation in $\mathbb C^n$

I. Kh. Musin, P. V. Fedotova

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Full-text PDF (547 kB) Citations (1)
References:
Abstract: A subspace of the Schwartz space of rapidly decreasing functions on closed convex unbounded set in $\mathbb R^n$, admitting holomorphic extension in $\mathbb C^n$, is studied. The problem of description of the dual space for this space in terms of the Fourier-Laplace transform is considered.
Keywords: tube domain, tempered distributions, the Laplace transform of functionals, $\overline\partial$-problem.
Received: 25.05.2009
Bibliographic databases:
UDC: 517.982.3
Language: Russian
Citation: I. Kh. Musin, P. V. Fedotova, “On a class of infinitely differentiable functions on unbounded convex set in $\mathbb R^n$ admitting holomorphic continuation in $\mathbb C^n$”, Ufimsk. Mat. Zh., 1:2 (2009), 75–100
Citation in format AMSBIB
\Bibitem{MusFed09}
\by I.~Kh.~Musin, P.~V.~Fedotova
\paper On a class of infinitely differentiable functions on unbounded convex set in~$\mathbb R^n$ admitting holomorphic continuation in~$\mathbb C^n$
\jour Ufimsk. Mat. Zh.
\yr 2009
\vol 1
\issue 2
\pages 75--100
\mathnet{http://mi.mathnet.ru/ufa12}
\zmath{https://zbmath.org/?q=an:1240.32021}
\elib{https://elibrary.ru/item.asp?id=12501232}
Linking options:
  • https://www.mathnet.ru/eng/ufa12
  • https://www.mathnet.ru/eng/ufa/v1/i2/p75
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:352
    Full-text PDF :131
    References:53
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024