Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2011, Volume 3, Issue 3, Pages 140–151 (Mi ufa109)  

About the unimprobality of the limiting embedding theorem for different metrics in the Lorentz spaces with Hermite's weight

E. S. Smailova, A. I. Takuadinab

a Institute of Applied Mathematics National Academy of Sciences of Kazakhstan, Karaganda, Kazakhstan
b Karaganda State Medical University, Karaganda, Kazakhstan
References:
Abstract: In this article we obtained inequality of different metrics in the Lorentz spaces with Hermit's weight for multiple algebraic polynomials. On this basis we established a sufficient condition of embedding of different metrics in the Lorenz spaces with Hermite's weight. Its unimprobality is shown in terms of the “extreme function”.
Let $f\in L_{p,\theta}(\mathbb R_n;\rho_n)$, $1\leq p<+\infty$, $1\leq\theta\leq+\infty$. The sequense $t\{l_k\}_{k=0}^{+\infty}\subset\mathbb N$ is such that $l_0=1$ and $l_{k+1}\cdot l_k^{-1}>a_0>1$, $\forall k\in\mathbb Z^+$. $f(\bar x)=\sum_{k=0}^{+\infty}\Delta_{l_k,\dots,l_k}(f;\bar x)$ is some presentation of the functions in the metric $L_{p,\theta}(\mathbb R_n;\rho_n)$, where $\Delta_{l_0,\dots,l_0}(f;\bar x)=T_{1,\dots,1},\Delta_{l_k,\dots,l_k}(f;\bar x)=T_{l_k,\dots,l_k}(\bar x)-T_{l_{k-1},\dots,l_{k-1}}(\bar x)$, $\forall k\in\mathbb N$. Here
$$ T_{l_k,\dots,l_k}(\bar x)=\sum_{m_1=0}^{l_k-1}\dots\sum_{m_n=0}^{l_k-1}a_{m_1,\dots,m_n}\prod^n_{i=1}x^{m_i}_i $$
are algebraic polynomials for all $k\in\mathbb Z^+$.
$1^0$. If the series
$$ A(f)_{p\theta}=\sum_{k=0}^{+\infty}l_k^{\tau(\frac n{2p}-\frac n{2q})}\|\Delta_{l_k,\dots,l_k}(f)\|_{L_{p,\theta}(\mathbb R_n;\rho_n)}^\tau $$
converge under some $q$ and $\tau$: $p<q<+\infty$, $0<\tau<+\infty$, then $f\in L_{q,\tau}(\mathbb R_n;\rho_n)$ and we have the inequality
$$ \|f\|_{L_{q,\tau}(\mathbb R_n;\rho_n)}\leq C_{pq\theta\tau n}\times(A(f)_{p\theta})^\frac1\tau. $$

$2^0$. The condition $1^0$ is unimprovable in the sense that there exists a function $f_0\in L_{p,\theta}(\mathbb R_n;\rho_n)$ and $A(f_0)_{p\theta}$ diverges for it and $f_0\notin L_{q,\tau}(\mathbb R_n;\rho_n)$. At the same time, the function $f_0\in L_{q-\varepsilon,\tau}(\mathbb R_n;\rho_n)$ for all $\varepsilon>0$: $p<(q-\varepsilon)<q$.
Keywords: Lorentz's space, Hermitte's weight, nonincreasing rearrangement, inequality of different metrics, theorem in embedding, non improving.
Received: 13.07.2011
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: E. S. Smailov, A. I. Takuadina, “About the unimprobality of the limiting embedding theorem for different metrics in the Lorentz spaces with Hermite's weight”, Ufa Math. J., 3:3 (2011)
Citation in format AMSBIB
\Bibitem{SmaTak11}
\by E.~S.~Smailov, A.~I.~Takuadina
\paper About the unimprobality of the limiting embedding theorem for different metrics in the Lorentz spaces with Hermite's weight
\jour Ufa Math. J.
\yr 2011
\vol 3
\issue 3
\mathnet{http://mi.mathnet.ru//eng/ufa109}
\zmath{https://zbmath.org/?q=an:1249.46023}
Linking options:
  • https://www.mathnet.ru/eng/ufa109
  • https://www.mathnet.ru/eng/ufa/v3/i3/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:331
    Full-text PDF :91
    References:57
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024