Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2011, Volume 3, Issue 3, Pages 105–119 (Mi ufa106)  

This article is cited in 4 scientific papers (total in 4 papers)

The singular Sturm–Liouville operators with nonsmooth potentials in a space of vector functions

K. A. Mirzoeva, T. A. Safonovab

a M. V. Lomonosov Moscow State University, Moscow, Russia
b Nothern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk, Russia
Full-text PDF (489 kB) Citations (4)
References:
Abstract: This paper deals with the Sturm-Liouville operators generated on the semi-axis by the differential expression $l[y]=-(y'-Py)'-P(y'-Py)-P^2y$, where $'$ is a derivative in terms of the theory of distributions and $P$ is a real-valued symmetrical matrix with elements $p_{ij}\in L^2_{loc}(R_+)$ ($i,j=1,2,\dots,n$). The minimal closed symmetric operator $L_0$ generated by this expression in the Hilbert space $\mathcal L^2_n(R_+)$ is constructed. Sufficient conditions of minimality and maximality of deficiency numbers of the operator $L_0 $ in terms of elements of a matrix $P$ are presented. Moreover, it is established, that the condition of maximality of deficiency numbers of the operator $L_0 $ (in the case when elements of the matrix $P$ are step functions with an infinite number of jumps) is equivalent to the condition of maximality of deficiency numbers of the operator generated by a generalized Jacobi matrix in the space $l^2_n$.
Keywords: quasi-derivative, Sturm–Liouville operator, singular potential, distributions, generalized Jacobi matrices, deficiency numbers, deficiency index.
Received: 14.07.2011
Bibliographic databases:
Document Type: Article
UDC: 517.983.35+517.983.3
Language: Russian
Citation: K. A. Mirzoev, T. A. Safonova, “The singular Sturm–Liouville operators with nonsmooth potentials in a space of vector functions”, Ufa Math. J., 3:3 (2011)
Citation in format AMSBIB
\Bibitem{MirSaf11}
\by K.~A.~Mirzoev, T.~A.~Safonova
\paper The singular Sturm--Liouville operators with nonsmooth potentials in a~space of vector functions
\jour Ufa Math. J.
\yr 2011
\vol 3
\issue 3
\mathnet{http://mi.mathnet.ru//eng/ufa106}
\zmath{https://zbmath.org/?q=an:1249.34094}
Linking options:
  • https://www.mathnet.ru/eng/ufa106
  • https://www.mathnet.ru/eng/ufa/v3/i3/p105
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:515
    Full-text PDF :169
    References:79
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024