|
Ufimskii Matematicheskii Zhurnal, 2011, Volume 3, Issue 3, Pages 67–79
(Mi ufa103)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Goursat problem for nonlinear hyperbolic systems with integrals of the first and second order
A. V. Zhibera, O. S. Kostriginab a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia
b Ufa State Aviation Technical University, Ufa, Russia
Abstract:
We consider the Goursat problem for one class of nonlinear hyperbolic systems of equations of the form
$$
u^i_{xy}=F^i(u, u_x, u_y),\qquad i=1,2,\quad u=(u^1,u^2),
$$
with integrals of the first and second order
\begin{gather*}
\omega^1(u^1,u^2,u^1_x,u^2_x),\ \omega^2(u^1,u^2,u^1_x,u^2_x,u^1_{xx},u^2_{xx}),\quad(\overline D(\omega^1)=\overline D(\omega^2)=0),\\
\overline\omega^1(u^1,u^2,u^1_y,u^2_y),\ \overline\omega^2(u^1,u^2,u^1_y,u^2_y,u^1_{yy},u^2_{yy}),\quad(D(\overline\omega^1)=D(\overline\omega^2)=0).
\end{gather*}
Explicit formulas for the solutions of the Goursat problem with the data set on the characteristics
\begin{gather*}
u^1(x_0,y)=\phi_1(y),\quad u^2(x_0,y)=\phi_2(y),\\
u^1(x,y_0)=\psi_1(x),\quad u^2(x,y_0)=\psi_2(x).
\end{gather*}
Keywords:
nonlinear hyperbolic equations, characteristics, Goursat problem.
Received: 15.07.2011
Citation:
A. V. Zhiber, O. S. Kostrigina, “Goursat problem for nonlinear hyperbolic systems with integrals of the first and second order”, Ufa Math. J., 3:3 (2011)
Linking options:
https://www.mathnet.ru/eng/ufa103 https://www.mathnet.ru/eng/ufa/v3/i3/p67
|
Statistics & downloads: |
Abstract page: | 394 | Full-text PDF : | 139 | References: | 69 | First page: | 2 |
|