Upravlenie Bol'shimi Sistemami
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UBS:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Upravlenie Bol'shimi Sistemami, 2016, Issue 62, Pages 169–187 (Mi ubs883)  

This article is cited in 9 scientific papers (total in 9 papers)

Control in Social and Economic Systems

The Optimal Majority Threshold as a Function of the Variation Coefficient of the Environment

P. Yu. Chebotarev, V. Malyshev, Ya. Yu. Tsodikova, A. K. Loginov, Z. M. Lezina, V. Afonkin

Institute of Control Sciences of RAS
Full-text PDF (918 kB) Citations (9)
References:
Abstract: Within the model of social dynamics determined by collective decisions in a stochastic environment (ViSE model), we consider the case of a homogeneous society consisting of classically rational economic agents (or homines economici, or egoists). We present expressions for the optimal majority threshold and the maximum expected capital increment as functions of the parameters of the environment. An estimate of the rate of change of the optimal threshold at zero is given, which is an absolute constant: <span class="InlineEquation" id="IEq1">\(( {\sqrt {2/\pi } - \sqrt {\pi /2} } )/2\)</span> .
Keywords: social dynamics, voting, stochastic environment, homines economici, ViSE model, pit of losses, optimal majority threshold.
Received: January 19, 2016
Published: July 31, 2016
English version:
Automation and Remote Control, 2018, Volume 79, Issue 4, Pages 725–736
DOI: https://doi.org/10.1134/S0005117918040136
Bibliographic databases:
Document Type: Article
UDC: 342.8
BBC: 67.400.5
Language: Russian
Citation: P. Yu. Chebotarev, V. Malyshev, Ya. Yu. Tsodikova, A. K. Loginov, Z. M. Lezina, V. Afonkin, “The Optimal Majority Threshold as a Function of the Variation Coefficient of the Environment”, UBS, 62 (2016), 169–187; Autom. Remote Control, 79:4 (2018), 725–736
Citation in format AMSBIB
\Bibitem{CheMalTso16}
\by P.~Yu.~Chebotarev, V.~Malyshev, Ya.~Yu.~Tsodikova, A.~K.~Loginov, Z.~M.~Lezina, V.~Afonkin
\paper The Optimal Majority Threshold as a Function of the Variation Coefficient of the Environment
\jour UBS
\yr 2016
\vol 62
\pages 169--187
\mathnet{http://mi.mathnet.ru/ubs883}
\elib{https://elibrary.ru/item.asp?id=26608675}
\transl
\jour Autom. Remote Control
\yr 2018
\vol 79
\issue 4
\pages 725--736
\crossref{https://doi.org/10.1134/S0005117918040136}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430094200013}
Linking options:
  • https://www.mathnet.ru/eng/ubs883
  • https://www.mathnet.ru/eng/ubs/v62/p169
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Upravlenie Bol'shimi Sistemami
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :101
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024