Abstract:
Considered a model of threshold behavior when each agent takes binary decision – to act or not to act according to the behavior of other agents. Problem of control is formulated and solved – the stochastically distributed initial state of part of agents is affected in order to change the equilibrium of acting agents.
Keywords:
collective behavior, model of threshold decision making, mob control.
Citation:
V. V. Breer, D. A. Novikov, A. D. Rogatkin, “Stochastic models of mob control”, UBS, 52 (2014), 85–117; Autom. Remote Control, 77:5 (2016), 895–913
This publication is cited in the following 6 articles:
E. A. Soldatova, A. V. Keller, “Numerical algorithm and computational experiments for one linear stochastic Hoff model”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 17:2 (2024), 83–95
A. A. Samartsev, V. A. Ivaschenko, A. F. Rezchikov, V. A. Kushnikov, L. Yu. Filimonyuk, A. S. Bogomolov, “Multiagentnaya model protsessa evakuatsii lyudei iz pomeschenii pri vozniknovenii chrezvychainykh situatsii”, UBS, 72 (2018), 217–244
I. N. Barabanov, D. A. Novikov, “Dinamicheskie modeli upravleniya vozbuzhdeniem tolpy v nepreryvnom vremeni”, UBS, 63 (2016), 71–86
I. N. Barabanov, D. A. Novikov, “Dynamic models of mob excitation control in discrete time”, Autom. Remote Control, 77:10 (2016), 1792–1804
D. A. Novikov, “Models of informational confrontation in mob control”, Automation and Remote Control, 77:7 (2016), 1259–1274
A. V. Batov, V. V. Breer, D. A. Novikov, A. D. Rogatkin, “Macro- and micromodels of social networks. Part 2. Identification and imitational experiments”, Automation and Remote Control, 77:2 (2016), 321–331