Upravlenie Bol'shimi Sistemami
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UBS:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Upravlenie Bol'shimi Sistemami, 2010, Issue 28, Pages 75–88 (Mi ubs375)  

This article is cited in 1 scientific paper (total in 1 paper)

Analysis and Synthesis of Control Systems

The adaptive optimal differentiation by standard deviation criterion

S. V. Gulyaeva, A. M. Shubladzea, V. A. Malakhova, V. R. Olshvanga, A. V. Krotovb

a V.A. Trapeznikov ICS of RAS
b Head of the department of "Gazavtomatika"
Full-text PDF (179 kB) Citations (1)
References:
Abstract: The method is suggested to solve the differentiation problem. It allows building the estimates for the derivatives of Gaussian stationary signals that are close to the optimal ones by the standard deviation criterion when the spectral density of a useful signal and a noise are known to within level. The problem is solved by the specifically designed nonlinear dynamic systems. A nearly optimal solution of the differentiation problem is found when the equivalent transfer function parameters of nonlinear dynamic differentiator can be made close to the parameters of the optimal Wiener filter for any fixed level of rational spectral density of a useful signal and a noise.
Keywords: differentiation, adaptation, optimality, Gaussian noise.
Document Type: Article
UDC: 681.518.22
BBC: 32.96
Language: Russian
Citation: S. V. Gulyaev, A. M. Shubladze, V. A. Malakhov, V. R. Olshvang, A. V. Krotov, “The adaptive optimal differentiation by standard deviation criterion”, UBS, 28 (2010), 75–88
Citation in format AMSBIB
\Bibitem{GulShuMal10}
\by S.~V.~Gulyaev, A.~M.~Shubladze, V.~A.~Malakhov, V.~R.~Olshvang, A.~V.~Krotov
\paper The adaptive optimal differentiation by standard deviation criterion
\jour UBS
\yr 2010
\vol 28
\pages 75--88
\mathnet{http://mi.mathnet.ru/ubs375}
Linking options:
  • https://www.mathnet.ru/eng/ubs375
  • https://www.mathnet.ru/eng/ubs/v28/p75
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Upravlenie Bol'shimi Sistemami
    Statistics & downloads:
    Abstract page:299
    Full-text PDF :113
    References:49
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024