Teplofizika vysokikh temperatur
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teplofizika vysokikh temperatur, 2015, Volume 53, Issue 3, Pages 356–366
DOI: https://doi.org/10.7868/S0040364415030047
(Mi tvt7863)
 

This article is cited in 8 scientific papers (total in 8 papers)

Thermophysical Properties of Materials

Description of heat capacity $C_v$ of simple liquids using a thermal equation of state, including regular and scaling parts

P. P. Bezverkhiia, V. G. Martynetsa, S. V. Stankusb

a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b S.S. Kutateladze Institute of Thermophysics, Siberian Division of the Russian Academy of Sciences
Full-text PDF (323 kB) Citations (8)
References:
Abstract: The $p,\rho,T$-data for $\mathrm{CO}_2$ are approximated in the ranges of $0 < \rho/\rho_c < 2$, $217 < T < 430$ K, and $0 < p \le 25$ MPa and for $\mathrm{SF}_6$ in the ranges of $0 < \rho/\rho_c < 2.5$, $225 < T < 340$ K, and $0 < p \le 10$ MPa using a new unified equation of state. In this equation, pressure p is an explicit function of $\rho$ and $T$. It includes a new regular part to approximate $p,\rho,T$-data in the liquid and gaseous regions of state outside the critical region, a singular part that is a scaling equation of state for the critical region, and a crossover function for combining these equations. The regular part consists of the sum of eight terms with eight constants, three of which are determined by the conditions at the critical point. The total number of system-dependent constants is fourteen, including the critical values of $p$, $\rho$, and $T$. In the scaling part of the equation of state, the critical exponents of the three-dimensional Ising model are used. The mean-square error of the description by pressure of the $p,\rho,T$-data for $\mathrm{CO}_2$ is $\pm0.63\%$, and for the $p,\rho,T$-data obtained for $\mathrm{SF}_6$, it is $\pm0.70\%$ over the entire range of gas and liquid states. Using the constants of the combined equation, heat capacity $C_v$ is calculated at isochores, isotherms, and a binodal, including those in the critical region. The calculation results describes the known experimental data of $C_v$ with an error of $\pm8\%$.
Received: 26.06.2013
English version:
High Temperature, 2015, Volume 53, Issue 3, Pages 338–347
DOI: https://doi.org/10.1134/S0018151X15030050
Bibliographic databases:
Document Type: Article
UDC: 536.44:536.63:536.71
Language: Russian
Citation: P. P. Bezverkhii, V. G. Martynets, S. V. Stankus, “Description of heat capacity $C_v$ of simple liquids using a thermal equation of state, including regular and scaling parts”, TVT, 53:3 (2015), 356–366; High Temperature, 53:3 (2015), 338–347
Citation in format AMSBIB
\Bibitem{BezMarSta15}
\by P.~P.~Bezverkhii, V.~G.~Martynets, S.~V.~Stankus
\paper Description of heat capacity $C_v$ of simple liquids using a thermal equation of state, including regular and scaling parts
\jour TVT
\yr 2015
\vol 53
\issue 3
\pages 356--366
\mathnet{http://mi.mathnet.ru/tvt7863}
\crossref{https://doi.org/10.7868/S0040364415030047}
\elib{https://elibrary.ru/item.asp?id=23335365}
\transl
\jour High Temperature
\yr 2015
\vol 53
\issue 3
\pages 338--347
\crossref{https://doi.org/10.1134/S0018151X15030050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356368500004}
\elib{https://elibrary.ru/item.asp?id=23989051}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84935917237}
Linking options:
  • https://www.mathnet.ru/eng/tvt7863
  • https://www.mathnet.ru/eng/tvt/v53/i3/p356
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024