Abstract:
Some experimental results on burning of the microwave discharge between a copper pin electrode and technical water, in air, are presented within the ranges of the voltage U=28–75 kV, the frequency f=40–100 MHz, and the interelectrode space l=2–20 mm. The essential influence of the pulse repetition frequency and the interelectrode space on the development, the shape, and the structure of the microwave discharge between the copper electrode and the technical water is revealed. Also the transition of the weakly glowing microdischarges inside the microwave discharge into the multichannel spark discharge is revealed. A temperature decrease below room temperature in the interelectrode gap of the microwave discharge with the technical water is discovered.
Citation:
É. E. Son, R. Sh. Sadriev, Al. F. Gaisin, L. N. Bagautdinova, F. M. Gaisin, E. F. Shakirova, M. F. Akhatov, Az. F. Gaisin, R. R. Kayumov, “Pecluraties of microwave discharge between a copper pin electrode and technical water”, TVT, 52:6 (2014), 961–964; High Temperature, 52:6 (2014), 939–941
\Bibitem{SonSadGai14}
\by \'E.~E.~Son, R.~Sh.~Sadriev, Al.~F.~Gaisin, L.~N.~Bagautdinova, F.~M.~Gaisin, E.~F.~Shakirova, M.~F.~Akhatov, Az.~F.~Gaisin, R.~R.~Kayumov
\paper Pecluraties of microwave discharge between a copper pin electrode and technical water
\jour TVT
\yr 2014
\vol 52
\issue 6
\pages 961--964
\mathnet{http://mi.mathnet.ru/tvt560}
\crossref{https://doi.org/10.7868/S0040364414060167}
\elib{https://elibrary.ru/item.asp?id=22403812}
\transl
\jour High Temperature
\yr 2014
\vol 52
\issue 6
\pages 939--941
\crossref{https://doi.org/10.1134/S0018151X14060169}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346405400022}
\elib{https://elibrary.ru/item.asp?id=24020784}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919594755}
Linking options:
https://www.mathnet.ru/eng/tvt560
https://www.mathnet.ru/eng/tvt/v52/i6/p961
This publication is cited in the following 10 articles:
S. Yu. Petryakov, D. N. Mirkhanov, Al. F. Gaisin, R. Sh. Basyrov, N. F. Kashapov, “Direct-current discharge between a metal anode and a liquid nonmetallic cathode”, J. Appl. Mech. Tech. Phys., 63:5 (2022), 746–756
Al. F. Gaisin, F. M. Gaisin, V. S. Zheltukhin, E. E. Son, “High-Frequency Discharge with a Jet Electrolytic Electrode”, Plasma Phys. Rep., 48:1 (2022), 48
M F Akhatov, R R Kayumov, R R Valeeva, R R Mardanov, “Wastewater disinfection methods”, J. Phys.: Conf. Ser., 1588:1 (2020), 012005
Az. F. Gaisin, R. Sh. Sadriev, L. N. Bagautdinova, R. T. Nasibullin, F. M. Gaisin, Sh. Ch. Mastyukov, “Low-power electric discharges with metallic, dielectric, and electrolytic electrodes at low frequencies and atmospheric pressure”, High Temperature, 58:6 (2020), 777–780
L. N. Bagautdinova, R. Sh. Sadriev, Az. F. Gaisin, Sh. Ch. Mastyukov, F. M. Gaisin, I. T. Fakhrutdinova, M. A. Leushka, Al. F. Gaisin, “Some features of dielectric barrier discharge with liquid and solid electrodes”, High Temperature, 57:6 (2019), 944–947
Az. F. Gaisin, L. N. Bagautdinova, Al. F. Gaisin, R. Sh. Sadriev, F. M. Gaisin, I. I. Galimzjanov, A. Kh. Gil'mutdinov, E. F. Shakirova, “Thermograms of high-frequency capacitive discharge between solid and liquid electrodes”, High Temperature, 56:5 (2018), 821–823
R. Sh. Sadriev, É. E. Son, L. N. Bagautdinova, Az. F. Gaisin, F. M. Gaisin, “The experimental study of an impulse electric discharge with liquid electrodes”, High Temperature, 55:2 (2017), 310–311
A. F. Gaisin, E. E. Son, S. Yu. Petryakov, “Radio-frequency capacitive discharge with flowing liquid electrodes at reduced gas pressures”, Plasma Phys. Rep., 43:7 (2017), 741–748
É. E. Son, Al. F. Gaisin, M. A. Leushka, Az. F. Gaisin, R. Sh. Sadriev, F. M. Gaisin, “Some pecularities of electric discharge between a solid electrode and technical water”, High Temperature, 54:1 (2016), 25–27
D. A. Shutov, S. A. Smirnov, A. S. Konovalov, A. N. Ivanov, “Modeling of the chemical composition of dc atmospheric pressure air discharge plasma in contact with aqueous solutions of sodium dodecylbenzenesulfonate”, High Temperature, 54:4 (2016), 483–487