Teplofizika vysokikh temperatur
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teplofizika vysokikh temperatur, 2021, Volume 59, Issue 2, Pages 212–220
DOI: https://doi.org/10.31857/S0040364421020046
(Mi tvt11409)
 

Heat and Mass Transfer and Physical Gasdynamics

Analytical solutions to models of local nonequilibrium heat transfer

È. M. Kartashov

M. V. Lomonosov Moscow Institute of Fine Chemical Technology
Abstract: A series of boundary-value problems of local nonequilibrium heat transfer is considered in terms of the theory of transient heat conduction for hyperbolic-type equations (wave equations). The mathematical models for the generalized equation are studied simultaneously in Cartesian, cylindrical (radial heat flux), and spherical (central symmetry) coordinate systems. The technique to determine analytical solutions to a broad class of practically important problems of transient heat conduction for canonical bodies (plate, solid cylinder, and solid sphere) and for partially bounded bodies (half-space bounded by a flat surface and spaces with an internal cylindrical cavity and an internal spherical cavity) is developed. The obtained, exact analytical solutions to a series of model problems can be considered as radically new results of analytical thermal physics.
Received: 04.05.2020
Revised: 06.07.2020
Accepted: 14.10.2020
English version:
High Temperature, 2021, Volume 59, Issue 2, Pages 186–194
DOI: https://doi.org/10.1134/S0018151X21020048
Bibliographic databases:
Document Type: Article
UDC: 536.2.001
Language: Russian
Citation: È. M. Kartashov, “Analytical solutions to models of local nonequilibrium heat transfer”, TVT, 59:2 (2021), 212–220; High Temperature, 59:2 (2021), 186–194
Citation in format AMSBIB
\Bibitem{Kar21}
\by \`E.~M.~Kartashov
\paper Analytical solutions to models of local nonequilibrium heat transfer
\jour TVT
\yr 2021
\vol 59
\issue 2
\pages 212--220
\mathnet{http://mi.mathnet.ru/tvt11409}
\crossref{https://doi.org/10.31857/S0040364421020046}
\elib{https://elibrary.ru/item.asp?id=45794914}
\transl
\jour High Temperature
\yr 2021
\vol 59
\issue 2
\pages 186--194
\crossref{https://doi.org/10.1134/S0018151X21020048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000776249000017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127431594}
Linking options:
  • https://www.mathnet.ru/eng/tvt11409
  • https://www.mathnet.ru/eng/tvt/v59/i2/p212
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Statistics & downloads:
    Abstract page:155
    Full-text PDF :73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024