Teplofizika vysokikh temperatur
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teplofizika vysokikh temperatur, 2007, Volume 45, Issue 4, Pages 552–556 (Mi tvt1113)  

This article is cited in 1 scientific paper (total in 1 paper)

Heat and Mass Transfer and Physical Gasdynamics

Simulation of turbulent mode of combustion of gas jets

Yu. V. Polezhaev, I. L. Mostinskii, D. A. Gorjainov, G. V. Gabbasova, A. V. Korshunov

Institute for High Temperatures, Russian Academy of Sciences, Moscow
Full-text PDF (476 kB) Citations (1)
Abstract: The diffusion mode of combustion of fuel jets in an oxygen-containing atmosphere occurs very widely both in nature and in engineering. In so doing, a glowing flame is formed, whose geometric dimensions define the energy efficiency of combustion of fuel.
The hydrodynamic structure of the flame exhibits a number of differences from the classical jet flows, in particular, from well-studied subsonic turbulent jets [1]. The flames are characterized by a high degree of hydrodynamic instability; however, at the same time, the flame height clearly follows the phenomenon such as the change of laminar mode for turbulent one; by the way, this phenomenon presents a difficult problem for investigation in flows of other types.
The diffusion mode of jet combustion is of further interest because of the presence of "scaling" effect, i.e., the dependence of the relative flame height both on the Reynolds number (which is typical of all flows with laminarto-turbulent transition) and on the dimensionless nozzle diameter $(d_0/d^*)$; in so doing, the threshold value of $d^*$ divides the entire diversity of dimensions into regions with the presence and absence of this effect.
These and other features of burning fuel jets present a serious problem for mathematical simulation of burners and combustors.
The paper contains analysis of a number of relations used in different models of turbulent combustion.
Received: 06.06.2006
English version:
High Temperature, 2007, Volume 45, Issue 4, Pages 497–501
DOI: https://doi.org/10.1134/S0018151X07040098
Bibliographic databases:
Document Type: Article
UDC: 536.461; 536.25
PACS: 47.27.te,47.27.wg,82.33.vx
Language: Russian
Citation: Yu. V. Polezhaev, I. L. Mostinskii, D. A. Gorjainov, G. V. Gabbasova, A. V. Korshunov, “Simulation of turbulent mode of combustion of gas jets”, TVT, 45:4 (2007), 552–556; High Temperature, 45:4 (2007), 497–501
Citation in format AMSBIB
\Bibitem{PolMosGor07}
\by Yu.~V.~Polezhaev, I.~L.~Mostinskii, D.~A.~Gorjainov, G.~V.~Gabbasova, A.~V.~Korshunov
\paper Simulation of turbulent mode of combustion of gas jets
\jour TVT
\yr 2007
\vol 45
\issue 4
\pages 552--556
\mathnet{http://mi.mathnet.ru/tvt1113}
\elib{https://elibrary.ru/item.asp?id=9534793}
\transl
\jour High Temperature
\yr 2007
\vol 45
\issue 4
\pages 497--501
\crossref{https://doi.org/10.1134/S0018151X07040098}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249212400009}
\elib{https://elibrary.ru/item.asp?id=13551155}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548455027}
Linking options:
  • https://www.mathnet.ru/eng/tvt1113
  • https://www.mathnet.ru/eng/tvt/v45/i4/p552
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024