Teplofizika vysokikh temperatur
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teplofizika vysokikh temperatur, 2020, Volume 58, Issue 1, Pages 101–106
DOI: https://doi.org/10.31857/S0040364420010093
(Mi tvt11119)
 

Heat and Mass Transfer and Physical Gasdynamics

The stability of a radial convergence of a cylindrical shell consisting of viscous incompressible liquid

Yu. G. Gubarevab, D. A. Fursovab

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: The problem of the nonlinear stability of the radial collapse of a cylindrical shell, which is filled with a viscous incompressible fluid of uniform density, is studied. A number of assumptions are made: (1) vacuum is contained inside the shell; (2) it is surrounded by a layer of compressed polytropic gas, which serves as a product of instant detonation and exerts constant pressure on the outer surface of the shell; (3) vacuum is also behind the gas layer. The absolute instability of the radial collapse of the considered viscous cylindrical shell with respect to finite perturbations of the same symmetry type is established by the direct Lyapunov method. A Lyapunov function that satisfies all of the conditions of the first Lyapunov instability theorem, regardless of the specific mode of radial convergence, is constructed. This result fully confirms Trishin’s corresponding hypothesis and is a rigorous mathematical proof that the cumulation of kinetic energy of a viscous incompressible fluid of uniform density in the process of radial collapse of the studied cylindrical shell to its axis occurs exclusively at its impulse stage.
Received: 08.10.2018
Revised: 29.08.2019
Accepted: 22.10.2019
English version:
High Temperature, 2020, Volume 58, Issue 1, Pages 101–106
DOI: https://doi.org/10.1134/S0018151X20010095
Bibliographic databases:
Document Type: Article
UDC: 532.5.032 + 536-36 + 532.5.013.4
Language: Russian
Citation: Yu. G. Gubarev, D. A. Fursova, “The stability of a radial convergence of a cylindrical shell consisting of viscous incompressible liquid”, TVT, 58:1 (2020), 101–106; High Temperature, 58:1 (2020), 101–106
Citation in format AMSBIB
\Bibitem{GubFur20}
\by Yu.~G.~Gubarev, D.~A.~Fursova
\paper The stability of a~radial convergence of a~cylindrical shell consisting of viscous incompressible liquid
\jour TVT
\yr 2020
\vol 58
\issue 1
\pages 101--106
\mathnet{http://mi.mathnet.ru/tvt11119}
\crossref{https://doi.org/10.31857/S0040364420010093}
\elib{https://elibrary.ru/item.asp?id=43284085}
\transl
\jour High Temperature
\yr 2020
\vol 58
\issue 1
\pages 101--106
\crossref{https://doi.org/10.1134/S0018151X20010095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000532745200015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084668682}
Linking options:
  • https://www.mathnet.ru/eng/tvt11119
  • https://www.mathnet.ru/eng/tvt/v58/i1/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :32
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024